>
Fa   |   Ar   |   En
   شناسایی فعالیت‌های انسانی مبتنی بر سنسورهای متحرک در اینترنت اشیا با استفاده از یادگیری عمیق  
   
نویسنده میرزایی عباس ,فرجی فاطمه
منبع مهندسي برق و مهندسي كامپيوتر ايران - 1400 - دوره : 19 - شماره : 4 - صفحه:313 -324
چکیده    کنترل محدوده‌ها، اماکن و سنسورهای حرکتی در اینترنت اشیا نیازمند کنترل پیوسته و مستمر برای تشخیص فعالیت‌های انسانی در شرایط مختلف است که این مهم، خود چالشی از جمله نیروی انسانی و خطای انسانی را نیز در بر دارد. کنترل همیشگی توسط انسان نیز بر سنسورهای حرکتی اینترنت اشیا غیر ممکن به نظر می‌رسد. اینترنت اشیا فراتر از برقراری یک ارتباط ساده بین دستگاه‌ها و سیستم‌ها می‌باشد. اطلاعات سنسورها و سیستم‌های اینترنت اشیا به شرکت‌ها کمک می‌کند تا دید بهتری نسبت به کارایی سیستم داشته باشند. در این پژوهش روشی مبتنی بر یادگیری عمیق و شبکه عصبی عمیق سی‌لایه‌ای برای تشخیص فعالیت‌های انسانی روی مجموعه داده تشخیص فعالیت دانشگاه فوردهام ارائه شده است. این مجموعه داده دارای بیش از یک میلیون سطر در شش کلاس برای تشخیص فعالیت در اینترنت اشیا است. بر اساس نتایج به دست آمده، مدل پیشنهادی ما در راستای تشخیص فعالیت‌های انسانی در معیارهای ارزیابی مورد نظر کارایی 90 درصد و میزان خطای 2/2 درصد را داشت. نتایج به دست آمده نشان از عملکرد خوب و مناسب یادگیری عمیق در تشخیص فعالیت است.
کلیدواژه تشخیص فعالیت انسانی، یادگیری عمیق، یادگیری ماشین، شبکه عصبی عمیق، اینترنت اشیا
آدرس دانشگاه آزاد اسلامی واحد اردبیل, گروه مهندسی کامپیوتر, ایران, دانشگاه آزاد اسلامی واحد اردبیل, گروه مهندسی کامپیوتر, ایران
پست الکترونیکی f.faraji920@gmail.com
 
   Detecting Human Activities Based on Motion Sensors in IOT Using Deep Learning  
   
Authors Mirzaei Abbas ,faraji fatemeh
Abstract    Control of areas and locations and motion sensors in the Internet of Things requires continuous control to detect human activities in different situations, which is an important challenge, including manpower and human error. Permanent human control of IoT motion sensors also seems impossible. The IoT is more than just a simple connection between devices and systems. IoT information sensors and systems help companies get a better view of system performance. This study presents a method based on deep learning and a 30layer DNN neural network for detecting human activity on the Fordham University Activity Diagnostic Data Set. The data set contains more than 1 million lines in six classes to detect IoT activity. The proposed model had almost 90% and an error rate of 0.22 in the evaluation criteria, which indicates the good performance of deep learning in activity recognition.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved