|
|
مدل توصیه مکانهای مورد علاقه با توجه به الگوی رفتاری افراد بر اساس لیست دوستان بر پایه یادگیری عمیق
|
|
|
|
|
نویسنده
|
صفوی صدف ,جلالی مهرداد
|
منبع
|
مهندسي برق و مهندسي كامپيوتر ايران - 1400 - دوره : 19 - شماره : 2 - صفحه:117 -126
|
چکیده
|
رشد سریع شبکههای اجتماعی مبتنی بر مکان، فرصتی عالی برای ارائه خدمات توصیه مکانهای مورد علاقه به صورت هدفمند میباشد. یک وظیفه مهم برای توصیه دقیق نقاط جذاب و مورد علاقه کاربران در شبکههای اجتماعی مبتنی بر مکان، با توجه به چالشهای متون غنی و پراکندگی دادهها، بررسی ویژگیهای معنادار کاربران و نقاط مورد علاقه است. در این مقاله، یک روش جدید برای توصیه ترتیب دقیق بهترین نقاط مورد علاقه کاربران ارائه شده که ترکیبی از رویکردهای شبکه عصبی کانولوشن، خوشهبندی و دوستی میباشد. برای یافتن شباهت در رفتار دوستان صمیمی، از روش خوشهبندی انتقال میانگین استفاده میکنیم و فقط تاثیر الگوی رفتاری شبیهترین دوست را به نسبت همه دوستان کاربر در نظر میگیریم. چارچوب جدید شبکه عصبی کانولوشن پیشنهادی با 10 لایه میتواند طول و عرض جغرافیایی و شناسه مکانهای مناسب بعدی را پیشبینی کرده و سپس بر اساس کوتاهترین فاصله از الگوی رفتاری دوست مشابه، مکانهای پیشنهادی را انتخاب کند. این رویکرد ترکیبی، در دو مجموعه داده شبکههای اجتماعی مبتنی بر مکان ارزیابی شده و نتایج تجربی نشان میدهد که استراتژی ما از روشهای پیشرفته توصیه نقاط مورد علاقه دقیقتر عمل میکند.
|
کلیدواژه
|
خوشهبندی انتقال میانگین، شبکه عصبی کانولوشن، شبکههای اجتماعی، نقاط مورد علاقه (poi)
|
آدرس
|
دانشگاه آزاد اسلامی واحد مشهد, گروه مهندسی کامپیوتر, ایران, دانشگاه آزاد اسلامی واحد مشهد, گروه مهندسی کامپیوتر, ایران
|
پست الکترونیکی
|
mehrdad.jalali@kit.edu
|
|
|
|
|
|
|
|
|
A POI Recommendation Model According to the Behavior Pattern of Users Based on Friends List Using Deep Learning
|
|
|
Authors
|
safavi sadaf ,jalali mehrdad
|
Abstract
|
The rapid growth of Locationbased Social Networks (LBSNs) is a great opportunity to provide personalized recommendation services. An important task to recommend an accurate PointofInterests (POIs) to users, given the challenges of rich contexts and data sparsity, is to investigate numerous significant traits of users and POIs. In this work, a novel method is presented for POI recommendation to develop the accurate sequence of topk POIs to users, which is a combination of convolutional neural network, clustering and friendship. To discover the likeness, we use the meanshift clustering method and only consider the influence of the most similarities in pattern’s friendship, which has the greatest psychological and behavioral impact rather than all user’s friendship. The new framework of a convolutional neural network with 10 layers can predict the next suitable venues and then select the accurate places based on the shortest distance from the similar friend behavior pattern. This approach is appraised on two LBSN datasets, and the experimental results represent that our strategy has significant improvements over the stateoftheart techniques for POI recommendation.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|