>
Fa   |   Ar   |   En
   حل مسئله بهینه‌سازی چندهدفه جایگذاری ماشین‌های مجازی در مراکز داده‌ای ابر با رویکرد کمینه‌سازی مصرف انرژی و هدررفت منابع با الگوریتم تبرید فلزات  
   
نویسنده حسینی شیروانی میرسعید
منبع مهندسي برق و مهندسي كامپيوتر ايران - 1400 - دوره : 19 - شماره : 2 - صفحه:106 -116
چکیده    در عصر حاضر، صنعت رایانش ابری به یک زنجیره تامین جدید بین ارائه‌دهندگان سرویس محاسباتی و درخواست‌دهندگان سرویس تبدیل شده است. برای این منظور، مراکز داده‌ای ابر به طور گسترده از تکنولوژی مجازی‌سازی استفاده می‌کنند که به طور بالقوه قابلیت افزایش بهره‌وری منابع محاسباتی در سطح زیرساخت ابر را فراهم می‌کند. طرح‌های ناکارامد جایگذاری ماشین‌های مجازی منجر به کاهش بهره‌وری سیستم، افزایش هدررفت منابع و در نتیجه مصرف بالای انرژی در مراکز داده‌ای ابر می‌شوند. بنابراین، این مقاله مسئله جایگذاری ماشین‌های مجازی روی ماشین‌های فیزیکی مرکز داده‌ای ابر را به یک مسئله بهینه‌سازی چندهدفه با رویکرد کمینه‌سازی دو هدف مصرف انرژی و هدررفت منابع فرمول‌بندی می‌کند که از لحاظ محاسباتی در رده مسایل nphard قرار دارد. از آنجایی که اکثر الگوریتم‌های فراابتکاری برای حل مسایل بهینه‌سازی پیوسته طراحی شده‌اند و نیز کیفیت راه حل آنها با خطر گیرافتادن در بهینه محلی تهدید می‌شود، برای حل این مسئله ترکیبی و پیچیده، یک الگوریتم بهینه‌سازی مبتنی بر تبرید فلزات متناسب با فضای جستجوی گسسته تعریف‌شده در مسئله، توسعه داده می‌شود تا امکان گیرافتادن در بهینه محلی را کاهش دهد. جهت اعتبارسنجی روش پیشنهادی، سناریوهای مختلفی معرفی و هدایت می‌شوند. نتایج به دست آمده از شبیه‌سازی در سناریوهای مختلف، برتری روش پیشنهادی را نسبت به سایر روش‌های موجود از لحاظ کاهش مصرف انرژی، هدررفت منابع و تعداد سرویس‌دهنده‌های فعال نشان می‌دهد.
کلیدواژه رایانش ابری، مجازی‌سازی، جایگذاری ماشین مجازی، تبرید فلزات
آدرس دانشگاه آزاد اسلامی واحد ساری, دانشکده مهندسی کامپیوتر, ایران
پست الکترونیکی mirsaeid_hosseini@iausari.ac.ir
 
   Multi-Objective Optimization Solution for Virtual Machine Placement Problem in Cloud Datacenters with Minimization of Power Consumption and Resource Dissipation Perspectives by Simulated Annealing Algorithm  
   
Authors Hosseini Shirvani Mirsaeid
Abstract    Nowadays, cloud computing industry has been transformed to a new supply chain between cloud service providers and service requesters. To this end, cloud service provisioning in datacenters is procured via virtualization platforms in which it can potentially increase the utilization of computing resources at infrastructure level. Inefficient virtual machine placement (VMP) schemes lead lower system utilization, increase of resource dissipation, and high rate of power consumption. Therefore, this paper formulates VMP problem on physical machines of cloud datacenters to a multiobjective optimization problem with minimization of both power consumption and resource dissipation perspectives which is computationally NPHard. Since the most metaheuristic algorithms are designed for continuous optimization problems and are also susceptible to get stuck in local optimum, to figure out this combinatorial problem an optimization algorithm based on simulated annealing algorithm commensurate with discrete search space of stated problem is extended, so that the possibility of getting stuck in local optimum is reduced. To validate the proposed approach, several scenarios are introduced and conducted. Reported results from simulation of different scenarios show that the proposed approach outperforms against other existing approaches in terms of reduction in power consumption, resource dissipation, and the number of active server in use.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved