>
Fa   |   Ar   |   En
   استفاده از خوشه‌بندی تکاملی برای تشخیص موضوع در بلاگ‌نویسی کوچک با لحاظ‌ نمودن اطلاعات شبکه اجتماعی  
   
نویسنده علوی الهام سادات ,مشایخی هدی ,حسن‌پور حمید ,رحیم‌پور کامی باقر
منبع مهندسي برق و مهندسي كامپيوتر ايران - 1398 - دوره : 17 - شماره : 4 - صفحه:277 -286
چکیده    متون کوتاه رسانه‌های اجتماعی مانند توییتر اطلاعات زیادی در مورد موضوع‌های داغ و افکار عمومی ارائه می‌دهند. برای درک بهتر اطلاعات دریافتی از شبکه‌های اجتماعی، شناسایی و ردیابی موضوع امری ضروری است. در بسیاری از روش‌های ارائه‌شده در این زمینه، تعداد موضوع‌ها باید از پیش مشخص باشد و نمی‌تواند در طول زمان تغییر کند. از این منظر، این روش‌ها برای داده‌های در حال افزایش و پویا مناسب نیستند. همچنین مدل‌های تکاملی موضوعی غیر پارامتری به دلیل مشکل کمبود داده‌ها، بر روی متون کوتاه عملکرد مناسبی ندارند. در این مقاله، یک مدل خوشه‌بندی تکاملی جدید ارائه کرده‌ایم که به طور ضمنی از فرایند رستوران چینی وابسته به فاصله (dd-crp) الهام گرفته است. در روش ارائه‌شده برای حل مشکل کمبود داده‌ها، از اطلاعات شبکه اجتماعی در کنار شباهت متنی، برای بهبود ارزیابی شباهت بین توییت‌ها استفاده شده است. همچنین در روش پیشنهادی، برخلاف اکثر روش‌های مطرح‌شده در این زمینه، تعداد خوشه‌ها به صورت خودکار محاسبه می‌شود. در واقع در این روش، توییت‌ها با احتمالی متناسب با شباهتشان به هم متصل می‌شوند و مجموعه‌ای از این اتصال‌ها یک موضوع را تشکیل می‌دهد. برای افزایش سرعت اجرای الگوریتم، از یک روش خلاصه‌سازی مبتنی بر خوشه‌بندی استفاده نموده‌ایم. ارزیابی روش بر روی مجموعه داده واقعی که در طول دو ماه و نیم از شبکه اجتماعی توییتر جمع‌آوری شده است، انجام می‌شود. ارزیابی به صورت خوشه‌بندی متون و مقایسه بین آنها می‌باشد. نتایج ارزیابی نشان می‌دهد که روش پیشنهادی نسبت به روش‌های مقایسه‌شده دارای انسجام موضوعی بهتری بوده و می‌تواند به طور موثر برای تشخیص موضوع بر روی متون کوتاه رسانه‌های اجتماعی استفاده گردد.
کلیدواژه تشخیص موضوع، خوشه‌بندی تکاملی، شبکه اجتماعی، مدل احتمالاتی
آدرس دانشگاه صنعتی شاهرود, دانشکده مهندسی کامپیوتر, ایران, دانشگاه صنعتی شاهرود, دانشکده مهندسی کامپیوتر, ایران, دانشگاه صنعتی شاهرود, دانشکده مهندسی کامپیوتر, ایران, دانشگاه علوم و فنون مازندران, دانشکده مهندسی برق و کامپیوتر, ایران
پست الکترونیکی rc_bagher@yahoo.com
 
   Using Evolutionary Clustering for Topic Detection in Microblogging Considering Social Network Information  
   
Authors Alavi E. ,Mashayekhi H. ,Hassanpour H. ,Rahimpour Kami B.
Abstract    Short texts of social media like Twitter provide a lot of information about hot topics and public opinions. For better understanding of such information, topic detection and tracking is essential. In many of the available studies in this field, the number of topics must be specified beforehand and cannot be changed during time. From this perspective, these methods are not suitable for increasing and dynamic data. In addition, nonparametric topic evolution models lack appropriate performance on short texts due to the lack of sufficient data. In this paper, we present a new evolutionary clustering algorithm, which is implicitly inspired by the distancedependent Chinese Restaurant Process (ddCRP). In the proposed method, to solve the data sparsity problem, social networking information along with textual similarity has been used to improve the similarity evaluation between the tweets. In addition, in the proposed method, unlike most methods in this field, the number of clusters is calculated automatically. In fact, in this method, the tweets are connected with a probability proportional to their similarity, and a collection of these connections constitutes a topic. To speed up the implementation of the algorithm, we use a clusterbased summarization method. The method is evaluated on a real data set collected over two and a half months from the Twitter social network. Evaluation is performed by clustering the texts and comparing the clusters. The results of the evaluations show that the proposed method has a better coherence compared to other methods, and can be effectively used for topic detection from social media short texts.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved