|
|
اصلاح معماری شبکه عصبی کانولوشنال جهت طبقهبندی تصاویر آغشته به نویز ضربه
|
|
|
|
|
نویسنده
|
مومنی محمد ,آقاصرام مهدی ,لطیف علی محمد ,شیخ پور راضیه
|
منبع
|
مهندسي برق و مهندسي كامپيوتر ايران - 1398 - دوره : 17 - شماره : 4 - صفحه:267 -276
|
چکیده
|
نویز ضربه موجب اختلال در فرایند طبقهبندی تصاویر توسط شبکه عصبی کانولوشنال میگردد. پیشپردازش جهت حذف نویز ضربه هزینهبر است و تصاویر تخریبشده به دلیل عدم بهبود کافی، اثر مخرب در مراحل آموزش و اعتبارسنجی این شبکه دارند. در این مقاله با اصلاح معماری شبکه عصبی کانولوشنال، یک مدل مقاوم در برابر نویز ضربه معرفی میشود. روش پیشنهادی، طبقهبندی تصاویر نویزی را بدون نیاز به هیچ گونه پیشپردازش انجام میدهد. لایه تشخیص نویز ضربه در بدنه شبکه عصبی کانولوشنال تعبیه میشود و از پردازش مقادیر نویزی جلوگیری میکند. برای آموزش مدل پیشنهادی از پایگاه داده 2012 ilsvrc استفاده شده است. نتایج شبیهسازی نشان میدهد که جلوگیری از تاثیرگذاری نویز ضربه در فرایند آموزش و طبقهبندی شبکه عصبی کانولوشنال، دقت و سرعت آموزش شبکه را افزایش میدهد. روش پیشنهادی با خطای 0.24 در طبقهبندی تصاویر آغشته به نویز ضربه با چگالی 10% بهتر از سایر روشهای مورد مقایسه میباشد. مرتبه زمانی (1)o در اصلاح cnn جهت مقاومت در برابر نویز نشاندهنده برتری روش پیشنهادی است.
|
کلیدواژه
|
نویز ضربه، شبکه عصبی کانولوشنال، طبقهبندی تصویر، شناسایی نویز
|
آدرس
|
دانشگاه یزد، پردیس فنی و مهندسی, دانشکده مهندسی کامپیوتر, ایران, دانشگاه یزد، پردیس فنی و مهندسی, دانشکده مهندسی کامپیوتر, ایران, دانشگاه یزد، پردیس فنی و مهندسی, دانشکده مهندسی کامپیوتر, ایران, دانشگاه اردکان, دانشکده فنی و مهندسی, گروه مهندسی کامپیوتر, ایران
|
پست الکترونیکی
|
rsheikhpour@ardakan.ac.ir
|
|
|
|
|
|
|
|
|
Improving the Architecture of Convolutional Neural Network for Classification of Images Corrupted by Impulse Noise
|
|
|
Authors
|
Momeny Mohammad ,Agha Sarram M. ,Latif A. M. ,Sheikhpour R.
|
Abstract
|
Impulse noise is one the common noises which reduces the performance of convolutional neural networks (CNNs) in image classification. Preprocessing for removal of impulse noise is a costly process which may have a destructive effect on the training and validation of the convolutional neural networks due to insufficient improvement of noisy images. In this paper, a convolutional neural network is proposed which is robust to impulse noise. Proposed CNN classify images corrupted by impulse noise without any preprocessing for noise removal. A noise detection layer is placed at the beginning of the proposed CNN to prevent the processing of noisy values. The ILSVRC2012 database is used to train the proposed CNN. Experimental results show that preventing the impact of impulse noise on the training process and classification of CNN can increase the accuracy and speed of the network training. The proposed CNN with error of 0.24 is better than other methods in classification of noisy image corrupted by impulse noise with 10% density. The time complexity of O(1) in the proposed CNN for robustness to noise indicates the superiority of the proposed CNN.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|