|
|
طبقهبندی تصاویر ابرطیفی با استفاده از تحلیل ممیز خطی فضای خوشه و مجموعه نمونههای آموزشی کوچک
|
|
|
|
|
نویسنده
|
ایمانی مریم ,قاسمیان حسن
|
منبع
|
مهندسي برق و مهندسي كامپيوتر ايران - 1395 - دوره : 14 - شماره : 1 - صفحه:73 -81
|
چکیده
|
امروزه، تصاویر ابرطیفی به دست آمده از سنجندههای از راه دور، امکان تمییز بین کلاسها با جزئیات بیشتر را فراهم آوردهاند. بعد بالای داده ابرطیفی از یک سو و کمبود تعداد نمونههای آموزشی از سوی دیگر، سبب ایجاد مشکلاتی در طبقهبندی تصاویر ابرطیفی میشود. از آنجایی که جمعآوری دادههای آموزشی سخت و زمانبر است، کاهش تعداد باندهای طیفی به بهبود کارایی طبقهبند کمک شایانی خواهد نمود. بنابراین استخراج ویژگی تصاویر ابرطیفی، یکی از مراحل مهم پیشپردازش این نوع دادهها محسوب میشود. در شرایطی که تعداد نمونه آموزشی در دسترس محدود است، روشهای استخراج ویژگی معمول همچون lda دارای کارایی خوبی نخواهند بود. در این مقاله، یک روش استخراج ویژگی نظارتشده معرفی گردیده که بدون نیاز به تعیین برچسب نمونههای آزمایشی، با انجام خوشهبندی بر روی آنها و یافتن رابطه بین نمونههای آموزشی و آزمایشی، از قدرت نمونههای بدون برچسب به همراه نمونههای آموزشی برای تولید ماتریسهای پراکندگی درونکلاسی و بینکلاسی استفاده میکند. این کار دقت طبقهبندی را خصوصاً برای دادههای ابرطیفی چندمده افزایش خواهد داد. روش پیشنهادی که تحلیل ممیز خطی فضای خوشه (cslda) نامیده میشود، با روشهای پرکاربرد استخراج ویژگی نظارتشده همچون lda، gda و nwfe مقایسه شده است. نتایج به دست آمده بر روی تصاویر ابرطیفی واقعی از مناطق شهری و کشاورزی نشان میدهند که روش پیشنهادی با استفاده از تعداد محدود نمونههای آموزشی، دارای کارایی بهتری نسبت به سایر روشها میباشد.
|
کلیدواژه
|
ابرطیفی، استخراج ویژگی، خوشهبندی، طبقهبندی، نمونه آموزشی
|
آدرس
|
دانشگاه تربیت مدرس, دانشکده مهندسی برق و کامپیوتر, ایران, دانشگاه تربیت مدرس, دانشکده مهندسی برق و کامپیوتر, ایران
|
پست الکترونیکی
|
ghassemi@modares.ac.ir
|
|
|
|
|
|
|
|
|
Classification of Hyperspectral Images Using Cluster Space Linear Discriminant Analysis and Small Training Set
|
|
|
Authors
|
Imani M. ,Ghassemian H.
|
Abstract
|
The hyperspectral images allow us to discriminate between different classes with more details. There are lots of spectral bands in hyperspectral images. On the other hand, the limited number of available training samples causes difficulties in classification of high dimensional data. Since the gathering of training samples is hard and time consuming, feature reduction can considerably improve the performance of classification. So, feature extraction is one of the most important preprocessing steps in analysis and classification of hyperspectral images. Feature extraction methods such as LDA have not good efficiency in small sample size situation. A supervised feature extraction method is proposed in this paper. The proposed method, which is called cluster space linear discriminant analysis (CSLDA), without obtaining the label of testing samples and just with doing a clustering on testing data, finds the relationship between training and testing samples. Then, it uses the power of unlabeled samples together with training samples for estimation of withinclass and betweenclass scatter matrices. The CSLDA improves the classification accuracy particularly in multimodal hyperspectral data. The experimental results on urban and agriculture hyperspectral images show the better performance of CSLDA compared to popular feature extraction methods such as LDA, GDA, and NWFE using limited number of training samples.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|