>
Fa   |   Ar   |   En
   ارایه مدل پیشبینی تشخیص عوامل ناباروری؛ با استفاده از الگوریتم‌های داده کاوی  
   
نویسنده درمحمدی سمیرا ,علیزاده سمیه ,اصغری محسن ,شامی مریم
منبع مديريت سلامت - 1393 - دوره : 17 - شماره : 57 - صفحه:46 -57
چکیده    مقدمه: حدود 15-10 درصد از زوجین نابارور هستند. ناباروری علل متفاوتی دارد و تشخیص روش درمان بیماران بر اساس نوع عامل ناباروری آن‌ها انجام می‌شود. در این تحقیق مدلی ارایه شده است که بر اساس ویژگی‌های اولیه و نتایج آزمایشات ساده علل ناباروری افراد را پیش‌بینی می‌کند که می تواند به پزشکان در تشخیص زودهنگام علت ناباروری و تصمیمگیری بهینه کمک کند. روش کار: داده‌های این تحقیق برگرفته از داده‌های ناباروری بیمارستان صارم تهران می‌باشد. در این تحقیق از روشهای دادهکاوی استفاده شده است. ابتدا روش خوشه‌بندی k-means و سپس روش‌های دسته‌بندی ماشین بردار پشتیبان (svm: support vector machine) و شبکه‌های عصبی مصنوعی به منظور پیش‌بینی نوع علل ناباروری، اجرا و نتایج دو الگوریتم دسته‌بندی با هم مقایسه شدند. همچنین برای تحلیل داده‌ها و اجرای الگوریتم‌های بخش مدل، از نرم‌افزار spss clementine 12.0 استفاده شده است.یافته‌ها: در بخش خوشه‌بندی بر اساس الگوریتم k-means داده‌ها به پنج خوشه تقسیم شدند. در هر گروه یک یا چند علت ناباروری مشاهده شد. در ادامه و با اجرای الگوریتم‌های دسته‌بندی svm و شبکه عصبی مصنوعی، مشخص شد که الگوریتم svm با نوع کرنل چندجمله‌ای بالاترین کارایی را به دست آورد.نتیجه گیری: انجام این تحقیق علاوه بر اینکه منجر به شناخت بهتر ویژگی های بیماران ناباروری شد، می تواند زمینه ای برای انجام تحقیقات آتی باشد. از آنجایی که با تشخیص علل ناباروری افراد قبل از مراحل ثانویه و آزمایشات سنگین، به مقدار قابل توجهی در هزینه و زمان صرفه‌جویی و از اثرات جسمی که بر بیماران می‌گذارد کاسته خواهد شد، می‌توان در مطالعات آینده با استفاده از نتایج این تحقیق سیستمی را جهت اجرای این مدل پیاده‌سازی نمود.کلید واژه‌ها: ناباروری، مدل، داده کاوی، k-means، ماشین بردار پشتیبان، شبکه‌های عصبی مصنوعی
کلیدواژه شبکه‌های عصبی مصنوعی ,ماشین بردار پشتیبان ,k-means ,داده کاوی ,ناباروری ,مدل
آدرس دانشگاه صنعتی خواجه نصیرالدین طوسی, ایران, دانشگاه صنعتی خواجه نصیرالدین طوسی, ایران, دانشگاه صنعتی خواجه نصیرالدین طوسی, ایران, کلینیک، ریاست، بیمارستان صارم، تهران، ایران, ایران
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved