>
Fa   |   Ar   |   En
   شناسایی گره‌های موثر در شبکه‌های اجتماعی با ترکیب روش‌های مرکزیت و فعالیت گره  
   
نویسنده کریمی علی ,بسطامی اسماعیل ,نعمتی مهران ,صالح اصفهانی محمود
منبع پدافند الكترونيكي و سايبري - 1399 - دوره : 8 - شماره : 3 - صفحه:1 -11
چکیده    دنیای امروز تبدیل به یک محیط رقابتی در همه زمینه‌ها مانند سیاست، اقتصاد، مسائل اجتماعی، عقاید و مانند این‌ها شده است که برای پیشبرد اهداف خود از ابزار شبکه‌های اجتماعی استفاده می‌کنند. محققین برای رسیدن به این اهداف توسط شبکه‌های اجتماعی از بیشینه‌سازی نفوذ (im) بهره می‌برند. وظیفه بیشینه‌سازی، شناسایی گره‌های موثری است که تحت عنوان گره‌های آغازگر شناخته می‌شوند و یک راهبرد برای رسیدن به بیشترین انتشار اطلاعات و یا کمترین اپیدمی با کمترین هزینه است. بیشینه‌سازی یک مسئله nphard است. محققان برای شناسایی گره‌های موثر به دنبال روش‌هایی برای کاهش پیچیدگی و دقت شناسایی قابل قبولی هستند؛ بنابراین در این تحقیق برای فائق آمدن به پیچیدگی مسئله و در عین حال بالا بردن دقت شناسایی، روشی جدید با ترکیب مرکزیت فعالیت ارائه می‌شود. در این روش به‌صورت سراسری محدودیتی بر روی گراف شبکه برای استخراج گره‌ها توسط روش مرکزیت ایجاد می‌شود در ادامه، تحلیل گراف توسط روش فعالیت بروی گره‌های محلی استخراج شده صورت می‌گیرد. امتیاز تحلیل فعالیت با امتیاز روش مرکزیت ترکیب می‌شود که منتج به نمایش گره‌های موثر می‌شود. روش پیشنهادی با روش‌هایی نظیر page rank و مرکزیت نزدیکی مقایسه می‌شود و نتایج حاکی از آن است که روش پیشنهادی از نظر دقت در نقاط پایین بهتر از هر دو عمل کرده است و از طرفی توانسته است پیچیدگی پایین‌تری نسبت به هر دو داشته باشد. در آینده برای بالا بردن دقت در نقاط بالا می‌توان در مرحله تحلیل فعالیت از مفاهیم امتیازدهی تکراری استفاده نمود.
کلیدواژه تاثیر، گره‌های موثر، بیشینه‌سازی نفوذ، مرکزیت، فعالیت
آدرس دانشگاه جامع امام حسین (ع), ایران, دانشگاه جامع امام حسین (ع), ایران, دانشگاه جامع امام حسین(ع), ایران, دانشگاه جامع امام حسین (ع), ایران
 
   Identifying Influential Nodes in Social Networks by Integrating the Centrality Method and Node Activity  
   
Authors Karimi A. ,Bastami E. ,Nemati M. ,Saleh Esfehani M.
Abstract    Nowadays, social networks have become a strong tool among researchers in addition to their social functions. This tool has many applications in identifying crimes, criminals and terrorists, solving epidemic problems, successful marketing and other topics in various fields. The researchers are using the influence maximization (IM) to achieve these goals. The task of maximization is to identify the influential nodes that are known as the seed nodes. It is a  strategy to achieve the maximum information diffusion or minimum epidemy with minimal cost. Since maximization is an NPhard problem, researchers are looking for ways to reduce the complexity and acceptable identification       accuracy by identifying influential nodes. Therefore, to overcome the complexity and increase the identification    accuracy, in this research a new method with activitycentrality combination is proposed. In this       approach, to extract nodes by the centrality method a total constraint is constructed on the network graph in order to proceed to the local nodes extracted from the node activity analysis. The results of analyzing the activity of each node are combined with its    centrality method score which ultimately leads to the identification of influential nodes. The proposed method is compared with other methods such as PageRank and Closeness Centrality methods, and the evaluation results show that whilst having a lower complexity, the proposed method is better than both in terms of accuracy. In the future, the concepts of repetitive scoring can be used to further enhance the accuracy of the activity analysis phase.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved