>
Fa   |   Ar   |   En
   طبقه‌بندی تصاویر ابرطیفی با استفاده از ترکیب ویژگی‌های مکانی مبتنی بر برازش محلی رویه و ویژگی‌های طیفی  
   
نویسنده اصغری بیرامی بهنام ,مختارزاده مهدی
منبع مهندسي فناوري اطلاعات مكاني - 1399 - دوره : 8 - شماره : 2 - صفحه:1 -19
چکیده    سنجنده‌های ابرطیفی به واسطه اخذ تعداد زیادی از باندهای طیفی، همواره دارای اهمیت خاصی در پایش پدیده‌های سطح زمین می‌باشند. طبقه‌بندی تصاویر ابرطیفی از جمله مهم‌ترین شاخه‌های پردازشی داده‌های ابرطیفی است که تا به حال تلاش‌های زیادی برای افزایش دقت آن صورت گرفته است. ویژگی‌های بافتی به دلیل اینکه می‌توانند سبب افزایش دقت طبقه‌بندی شوند همواره مورد توجه بوده‌اند. در مقاله حاضر روشی جدید برای تولید ویژگی‌های مکانی از تصاویر ابرطیفی مبتنی بر برازش محلی رویه معرفی شده است. در این روش رویه‌ای به سطح خاکستری تصویر در محدوده اطراف هر پیکسل برازش داده می‌شود و از ضرایب رویه برازش داده شده، ضرایب فرم‌های اساسی اول و دوم، انحناهای سطح، دیورژانس گرادیان، مساحت سطح خاکستری تصویر و حجم محصور در زیر رویه در ابعاد پنجره گوناگون به عنوان ویژگی مکانی استفاده می‌شوند. ویژگی‌های مکانی پیشنهادی در کنار ویژگی‌های طیفی قرار گرفته بردار طیفی مکانی حاصل به کمک دو روش k همسایگی نزدیک و ماشین بردار پشتیبان طبقه‌بندی می‌شود. آزمایش‌های این مقاله که بر روی دو تصویر ابرطیفی حقیقی از دو منطقه کشاورزی و شهری صورت گرفته است؛ نشان از برتری روش پیشنهادی دارد. نتایج نهایی نشان می‌دهد که دقت کلی طبقه‌بندی با روش پیشنهادی می‌تواند در بهترین حالت 7 درصد از دقت کلی روش‌های رقیب بیشتر باشد.
کلیدواژه طبقه‌بندی، تصاویر ابرطیفی، ویژگی‌های برازش محلی رویه، بافت، استخراج ویژگی.
آدرس دانشگاه صنعتی خواجه نصیرالدین طوسی, دانشکده مهندسی نقشه برداری, گروه فتوگرامتری و سنجش از دور, ایران, دانشگاه صنعتی خواجه نصیرالدین طوسی, دانشکده مهندسی نقشه برداری, گروه فتوگرامتری و سنجش از دور, ایران
 
   Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features  
   
Authors Asghari Beirami Behnam ,Mokhtarzadeh Mehdi
Abstract    Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification accuracy. In the present paper, a new method is proposed for the spatial features generation of hyperspectral images based on local surface fitting technique. In this method, a surface is fitted to the gray level intensity of the image in the local window around each pixel, and the fitted coefficients, the coefficients of the first and second fundamental forms, curvatures, divergence of the gradient, the area of ​​the gray level intensity of the image and the volume enclosed below the surface are produced in the various window sizes as spatial features. Proposed spatial features stacked with spectral features and form the spectralspatial vector. this rich spatialspectral vector is classified with Knearest neighbor and support vector machine classifiers. The experiments of this paper that are conducted on two real hyperspectral images in agricultural and urban areas show the superiority of the proposed method. The final results show that the overall accuracy of the proposed method in the best case is 7% higher than other competitor methods.
Keywords Classification ,Hyperspectral Images ,Local Surface Fitting Features ,Texture ,Feature extraction.
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved