>
Fa   |   Ar   |   En
   toeplitz-like preconditioner for linear systems from spatial fractional diffusion equations  
   
نویسنده akhoundi n.
منبع iranian journal of numerical analysis and optimization - 2021 - دوره : 11 - شماره : 1 - صفحه:95 -106
چکیده    ‎the article deals with constructing toeplitz-like preconditioner for linear systems arising from finite difference discretization of the spatial fractional diffusion equations‎. ‎the coefficient matrices of these linear systems have an s+l structure‎, ‎where s is a symmetric positive definite (spd) matrix and l satisfies rank(l)≤2‎. ‎we introduce an approximation for the spd part s‎, ‎which is called ps‎, ‎and then we show that the preconditioner p=ps+l has the toeplitz-like structure and its displacement rank is 6‎. ‎the analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1. numerical experiments exhibit that the toeplitz-like preconditioner can significantly improve the convergence properties of the applied iteration method.
کلیدواژه fractional diffusion equation ,toeplitz-like matrix ,krylov subspace methods ,pgmres
آدرس damghan university, school of mathematics and computer science, iran
پست الکترونیکی akhoundi@du.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved