>
Fa   |   Ar   |   En
   ارزیابی قابلیت هوش مصنوعی در پیش بینی میزان هدایت الکتریکی و نیترات در منابع آب زیرزمینی (مطالعه موردی روش های عصبی مصنوعی ann و anfis)  
   
نویسنده نجف پور نویده ,وحدت پور نیاز ,آقابابایی الهام
منبع مهندسي و مديريت كيفيت - 1402 - دوره : 13 - شماره : 2 - صفحه:207 -230
چکیده    منابع آب زیرزمینی در کشور ایران و بسیاری از کشورهای دیگر که آب و هوایی مشابه دارند، مهم ترین منابع آب مورد استفاده در کشاورزی و شرب به شمار می‌رود.در دهه های اخیر سیستم های هوش مصنوعی (ai)، فضایی جدید در ارزیابی مسائل مهندسی آب و محیط زیست ایجاد کرده است. در این مطالعه روش کریجینگ معمول به عنوان یک تخمین گر آماری خطی و دو روش هوشمند شبکه عصبی مصنوعی ann و سیستم استنتاج تطبیقی عصبی فازی anfis ، در پیش بینی مقدار هدیت الکتریکی و نیترات در آب‌های زیرزمینی ارزیابی شدند. به منظور انجام مطالعات غلظت نیترات در 40 چاه در دشت لنجانات اصفهان به روش اسپکتوفتومتر و همچنین هدایت الکتریکی مورد اندازه گیری قرار گرفت داده های ورودی مدل عصبی مصنوعی شامل طول و عرض جغرافیایی و غلظت نیترات و مقدار هدایت الکتریکی به عنوان خروجی مدل تعیین شدند در راستای بررسی عملکرد و کارایی مدل های هوش مصنوعی در پیش بینی اطلاعات کیفی اطلاعات کفی 50 درصد چاه ها به منظور واسنجی و 50 درصد چاه ها به منظور صحت سنجی مدل های استفاده شدند در نهایت خروجی مدل ها با مقدار اندازه گیری شده در چاه های مشاهداتی بر اساس معیار های ارزیابی متقابل خطا مقایسه شد. نتایج نشان داد مدل anfis نسبت به دو مدل درون یابی دیگر عملکرد بهتری در پیش بینی مقدار هدایت الکتریکی و نیترات به ترتیب با ریشه میانگین مربعات خطا (rmse) و (mg/l) 5.362، با میانگین اریب خطا (mbe)، 2.365 و با ضریب همبستگی (r) و 0.767 داشته است. همچنین مدل ann به مراتب نتایج بهتری نسبت به روش کریجینگ معمول داشت. بر این اساس مدل anfis برای پیش بینی هدایت الکتریکی و نیترات در محدوده مطالعاتی پیشنهاد می‌شود.
کلیدواژه آب زیرزمینی، هوش مصنوعی، توزیع مکانی، نیترات، هدایت الکتریکی
آدرس شرکت آب منطقه ای اصفهان, ایران, شرکت آب منطقه ای اصفهان, گروه کیفیت منابع آب, ایران, شرکت آب منطقه ای اصفهان, ایران
پست الکترونیکی elham_aghababaie@yahoo.com
 
   evaluating the capability of artificial intelligence in predicting the amount of electrical conductivity and nitrate in underground water resources (a case study of artificial neural methods ann and anfis)  
   
Authors najafpour navideh ,vahdatpour niaz ,aghababaei elham
Abstract    in recent decades, artificial intelligence (ai) systems have created a new space in evaluating water and environmental engineering issues. in this study, the usual kriging method as a linear statistical estimator and two intelligent methods of artificial neural network ann and adaptive neural fuzzy inference system anfis were evaluated in predicting the amount of electric conductivity and nitrate in groundwater. in order to conduct studies, nitrate concentration in 40 wells in lanjanat plain of isfahan was measured by spectrophotometer and electrical conductivity. the input data of the artificial neural model, including the length and width of the geographies, the nitrate concentration, and the electrical conductivity value were determined as the output of the model. in order to investigate the performance and efficiency of artificial intelligence models in predicting qualitative information, qualitative information of 50% of the wells was used for calibration and 50% of the wells were used for validating the models. finally, the output of the models was compared with the value measured in the observation wells based on the mutual error evaluation criteria. the results showed that the anfis model performed better than the other two interpolation models in predicting the value of electrical conductivity and nitrate, respectively, with the root mean square error (rmse) and (mg/l) of 5.362, with the mean bias error (mbe) 2.365 with a correlation coefficient (r) of 0.767. also, the ann model had far better results than the usual kriging method. based on this, anfis model is proposed for spatial prediction of electrical conductivity and nitrate in the study area.
Keywords groundwater ,neural network ,fuzzy interface ,ordinary kriging
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved