>
Fa   |   Ar   |   En
   groundwater level forecasting using wavelet and kriging  
   
نویسنده rajaee taher ,nourani vahid ,pouraslan fatemeh
منبع journal of hydraulic structures - 2016 - دوره : 2 - شماره : 2 - صفحه:1 -21
چکیده    In this research, a hybrid waveletartificial neural network (wann) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (gwl) for one month ahead. for this purpose, monthly observed time series of gwl were collected from september 2005 to april 2014 in 10 piezometers around mashhad city in the northeast of iran. in temporal forecasting, an artificial neural network (ann) and a wann were trained for each piezometer. kriging was used in spatial estimations. the comparison of the prediction accuracy of these two models illustrated that the wann was more efficacious in prediction of gwl for one month ahead. thereafter, in order to predict gwl in desired points in the study area, the kriging method was used and a gaussian model was selected as the best variogram model. ultimately, the wann with coefficient of determination and root mean square error and mean absolute error, 0.836 and 0.335 and 0.273 respectively, in temporal forecasting and gaussian model with root mean square, 0.253 as the best fitted model on kriging method for spatial estimating were suitable choices for spatiotemporal gwl forecasting. the obtained map of groundwater level showed that the groundwater level was higher in the areas of plain located in mountainside areas. this fact can show that outcomes are respectively correct.
کلیدواژه artificial neural network ,wavelet ,kriging ,spatiotemporal prediction ,groundwater level
آدرس university of qom, department of civil engineering, ایران, university of tabriz, faculty of civil engineering, department of water resources engineering, ایران, university of qom, department of civil engineering, ایران
پست الکترونیکی fpouraslan@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved