>
Fa   |   Ar   |   En
   برآورد شوری خاک با استفاده از داده‌های دورسنجی و آمار مکانی در منطقه سبزوار  
   
نویسنده کرم امیر ,کیانی طیبه ,دادرسی سبزوار ابوالقاسم ,داورزنی زهرا
منبع پژوهش هاي ژئومورفولوژي كمي - 1398 - دوره : 7 - شماره : 4 - صفحه:31 -53
چکیده    شوری خاک یکی از عوامل محدودکننده رشد گیاهان و تخریب اراضی است. شناخت تغییرات مکانی و زمانی آن تاثیر به‌سزایی در مطالعات خاک‌شناسی، ژئومورفولوژی و هیدرولوژی دارد. برآورد شوری خاک با استفاده از داده‌های دورسنجی و آمار مکانی امکان تفکیک پارامترها را با دقت بالاتر فراهم نموده و شاخص‌ها با ضریب اطمینان بیشتری خود را نشان می‌دهند. هدف از این پژوهش، کاربردی ساختن و دسترسی به پایگاه‌های دور یا بیرون از دسترس شوری خاک در مناطق خشک و نیمه‌خشک با استفاده از تکنیک‌های سنجش‌ازدور است. منطقه سبزوار در غرب استان خراسان‌رضوی از لحاظ شرایط اقلیمی، خشک و نیمه‌خشک است و مسئله شور شدن خاک‌ها و تسریع روند آن در سال‌های اخیر یکی از چالش‌های اساسی این منطقه است؛ لذا شناخت شوری در این شرایط از اهمیت ویژه‌ای برخوردار است. در این پژوهش، 48 نمونه خاک منطبق با نقشه واحد کاری (ژئومورفولوژی) از منطقه برداشت شد، سپس به بررسی رابطه همبستگی بین مقادیر هدایت الکتریکی(ec) با متغیرهای بدست آمده از تصاویر ماهواره‌ای لندست شامل شاخص‌های شوری، شاخص‌های پوشش گیاه، شاخص روشنایی، باندهای تصویرسازهای tm,etm+,oli، شاخص مولفه‌های اصلی و شاخص انتقال طیفی، اقدام گردید. در محیط spss روش رگرسیون چند متغیره در قالب 5 روش رگرسیونی، رگرسیون چندگانه گام‌به‌گام، رگرسیون چندگانه پس حذف رو، رگرسیون چندگانه پیشرو، رگرسیون چندگانه وارد شونده، رگرسیون چندگانه عزل انجام گرفت. در محیط gis10.2.2 arc با استفاده از مدل‌های آمارمکانی، شاخص موران و خوشه‌بندی حداقل – حداکثر به بررسی رابطه همبستگی آن‌ها پرداخته شد. همبسته‌ترین متغیرها با محاسبه عامل تورم واریانس و ضریب پیرسون مشخص شدند. نتایج نشان می‌دهد الگوی همبستگی فضایی مثبت و مدل‌ها از ضریب همبستگی مناسبی برخوردارند. در این پژوهش روش‌های دورسنجی و مدل‌های پیش‌بینی کننده، توانایی مناسبی برای تخمین شوری سطحی خاک نشان دادند.
کلیدواژه شوری خاک، سنجش‌از دور، شاخص‌های طیفی، منطقه سبزوار
آدرس دانشگاه خوارزمی تهران, گروه جغرافیای طبیعی, ایران, دانشگاه خوارزمی تهران, گروه جغرافیای طبیعی, ایران, سازمان تحقیقات،آموزش و ترویج کشاورزی, مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی, ایران, دانشگاه خوارزمی تهران, گروه جغرافیای طبیعی, ایران
پست الکترونیکی z.davarzani@yahoo.com
 
   Estimating soil salinity by using of remote sensing data and spatial statistic in sabzevar region  
   
Authors karam Amir ,kiani Tayyebeh ,dadrasi sabzevar Abolghasem ,davarzani zahra
Abstract    Soil salinity is a limiting factor for plant growth and a serious cause of land degradation cognition change space and time every impressible in the study agrology, geomorphology, hydrology, Estimating soil salinity by using of remote sensing data and spatial statistic showed possible resolution parameter high accuracy obtain and indexes the every coefficient. goal of this research application program and access is base away and out access soil salinity in the arid and semiarid zone by using of remote sensing techniques. sabzevar zone in the west khorasan Razavi have arid and semiarid climate conditions and soil salinity problem and acceleration rend that is one of the greatest challenges of this zone in the resent years, so that recognizing salinity in this condition have specific important. In this research The 48 sample soil sampled which correspond with work unit map(geomorphology) the zone, After ward, acted to consider relation correlation between value electrical conductivity(EC) and variable obtain of Landsat satellite imagery included salinity indexes, vegetation indexes, brightness index, imagery bands TM, ETM+, OLI, Principal component analysis, Tasseled Cap Transformation. In SPSS, multivariate regression method was used in the form of five regression methods, step wise multiple regression, Back ward elimination, Forward multiple regression, Enter multiple regression, Stepwise multiple regression.In the Arc.GIS.10.2.2 by using spatial statistic models, Moran’s Index and HighLow clustering did consider related correlation. The most correlation determined by calculation variance Inflation factor and Pearson coefficient. The result showed pattern correlation is positive and models of have suitable correlation coefficient. In this research, remote sensing methods and anticipated models have suitable ability for estimating surface soil salinity.   Introduction Soil salinization and its development in arid and semiarid zone are one of the environmental hazards that have been take into consideration in recent years and the range is creasing day by day. The main objective of this study is: To understand the spectral reflectance characteristics of saline soil in sabzevar plain, to explore the potential of Landsat satellite imagery to detect and map the soil salinity and to analysis the correlation between field and Landsat imagery. The finally, produce the soil salinity.   Methodology  In analysis, Landsat satellite imagery in three different dates (3 April1995, 27 June 2006, 19 November2017) are used as a first step. Landsat satellite imagery TM, ETM+, OLI, provided by the United States Geological survey. Acquired from Atmospheric and radiometer correction was applied images and the flat field method, which is a relative correction method, was used for atmospheric correction of images. In the next stage, spectral indexes were used. These indices include three vegetation indices(SAVI,EVI,NDVI),four salinity indices (EC,SI1,SI2,SI3),a one brightness index(BI),three main Principal component analysis(PCA1PCA2PCA3),Tasseled Cap Transformation(Tasseled cap123),coincide transferred 48soil sample to soil laboratory. Finally, salinity data of the soil horizons in the ArcGIS environment, on individual variables, overlapping and cutting off given. The descriptive tables resulting from the previous step in the Excel environment were then transferred SPSS and analyzed. In the spatial spatial method were used moran’s index and HighLow clustering.   Results and discussion One the methods for extracting information, analyzing and evaluating satellite imagery is to create a regression between the desired land parcel and its corresponding image. In all correlation models, R (Pearson correlation coefficient) is strong. The resulting (sig) value is less than 0.05. All models are meaningful and their correlation is positive. Moran’s index and HighLow clustering, validate spatial correlation and clustering of data, In addition, maps and charts show increased salinity from1995to2017.In 1995, more than 70percent of the area of the salinity area was low, while the land area would reach less than 10 percent 2017.   Conclusion All models have acceptable calibration and the accuracy of the extracted function, Back ward elimination regression method is more than the order models. The use of spatial statistics, in addition to having the proper accuracy due to the presentation of the distribution map of the points, the error map and the lack of the need for information exchange between the soft different is superior to the classical statistical models. Landsat satellite imagery useful in detecting and monitoring the saline soil. Identify areas at risk for soil salinity is very important in the shortest possible time and with high precision for proper management practices
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved