|
|
سهم بندی منابع رسوبات تپههای ماسهای با استفاده از دو مدل ترکیبی مورد استفاده در روش انگشتنگاری رسوب (مطالعه موردی: منطقه ی جازموریان، جنوب استان کرمان)
|
|
|
|
|
نویسنده
|
دولت کردستانی مجتبی ,غلامی حمید ,احمدی جواد ,فتح آبادی ابوالحسن ,walling desmond
|
منبع
|
پژوهش هاي ژئومورفولوژي كمي - 1396 - دوره : 6 - شماره : 3 - صفحه:1 -14
|
چکیده
|
روش انگشت نگاری رسوب همراه با مدل های ترکیبی یک رویکرد رایج در کمی نمودن سهم منابع رسوبات به ویژه رسوبات آبی می باشد ولی در زمینه رسوبات بادی تحقیقات اندکی انجام شده است. در این تحقیق، دو مدل ترکیبی کالینز و هوگس مورد استفاده در انگشت نگاری رسوب به منظور کمی نمودن سهم منابع رسوبات تپه های ماسه ای در منطقه جازموریان، جنوب کرمان بکار برده شد. بدین منظور پس از تعیین جهات باد و تهیه نقشه زمین شناسی، اقدام به نمونه برداری از منابع بالقوه تپه های ماسه ای شامل پهنه های ماسه ای (qs)، رسوبات آبرفتی ریزدانه و بستر خشکرودها (qal)، رسوبات مخروط افکنه ها و پادگانه ها (qt) و ترکیب رس و نمک (qc)؛ و از مناطق رسوب یا تپه های ماسه ای (qsd) گردید. به طوری که 58 نمونه سطحی از منابع بالقوه تپه های ماسه ای شامل 7 نمونه از qs، 25 نمونه از qal، 5 نمونه از qt و 21 نمونه از qc؛ و 14 نمونه از مناطق رسوب (qsd) برداشت گردید و پس از آماده سازی نمونه ها، غلظت ده عنصر (ni, cu, co, cr, ga, mn, p, ba, sr و li) اندازه گیری شد. به منظور تفکیک منابع تپه های ماسه ای، از یک فرآیند آماری دو مرحله ای شامل تست های کروسکال والیس و آنالیز تابع تشخیص گام به گام استفاده گردید که چهار ردیاب شامل cr, li, ni و co به عنوان ردیاب های بهینه انتخاب شدند و به عنوان پارامترهای ورودی به مدل های ترکیبی مورد استفاده قرار گرفتند. سهم های ارائه شده برای منابع تپه های ماسه ای توسط هر دو مدل مشابه هم بدست آمد و منابع qs و qal به عنوان منابع غالب برای 14 نمونه تپه ماسه ای شناخته شدند. همچنین بر طبق نتایج، مقادیر gof محاسبه شده برای مدل کالینز (با بالاترین مقدار gof برابر 99.95 درصد) بالاتر از مدل هوگس (با بالاترین gof برابر 99.9 درصد) محاسبه شد که نشان دهنده کارآیی بالای این مدل در منشایابی رسوبات تپه ماسه ای می باشد. به طور کلی، استفاده از روش انگشت نگاری رسوب با مدل ترکیبی کالینز برای کمی نمودن سهم منابع تپه های ماسه ای فعال در سایر مناطق پیشنهاد می گردد.
|
کلیدواژه
|
مدلهای ترکیبی، انگشتنگاری رسوب، ردیاب بهینه، جازموریان
|
آدرس
|
دانشگاه هرمزگان, گروه مهندسی منابع طبیعی, ایران, دانشگاه هرمزگان, دانشکده ی کشاورزی و منابع طبیعی, گروه مهندسی منابع طبیعی, ایران, سازمان انرژی اتمی, پژوهشکده چرخه سوخت هسته ای, ایران, دانشگاه گنبد کاووس, دانشکده ی کشاورزی و منابع طبیعی, گروه مرتع و آبخیزداری, ایران, دانشگاه اکستر, گروه جغرافیای طبیعی, انگلستان
|
|
|
|
|
|
|
|
|
|
|
Apportionment sources of sand dune sediment using two mixing models used to sediment fingerprinting (Case study: Jazmurian region, south of Kerman province)
|
|
|
Authors
|
Walling Desmond
|
Abstract
|
IntroductionThe entrainment, transport, and deposition of sediments by wind, or aeolian processes, affect all major components of the Earth system and provide important biogeochemical linkages between the atmosphere, hydrosphere, biosphere, and pedosphere (Field et al, 2010). Large part of Iran located in arid and semiarid regions which wind erosion act as an important geomorphological process over an area of about 24 million ha and also, Iran’s dune fields as depositional Aeolian environments cover an area about 5.5 million ha (Gholami et al, 2017a). Aeolian deposits are widely distributed in the arid areas of Iran, forming ergs such as Yazd, Ashkzar, Kashan and Jazmurian. Jazmurian erg and its surrounding areas at the border of south of Kerman and SistanBaloochestan provinces, Iran experiences severe wind erosion, which causes both onsite and offsite effects.Although there have been studies of Aeolian sand in both arid and semiarid zones, much of the focus has been on genesis of dune forms, sedimentary structures, and chronology of dune deposition. It is interesting that there has been much less work done on understanding dune sediment provenance (Muhs, 2017).Therefore, Identifying and quantifying source contribution of Aeolian sediments is necessary to decreasing onsite and offsite effects of wind erosion in the arid and semiarid regions of worldwide. Sediment fingerprinting was applied by many researchers to quantifying source contributions of fluvial sediments (e.g., Collins et al, 1997; Walling et al, 1999; Pulley et al, 2015; Haddadchi et al, 2013; Nosrati et al, 2014) and several studies applied this technique to quantify source contributions of Aeolian sediments (e.g., Gholami et al, 2017a,b; Liu et al, 2016). A remarkable range of properties has been employed in sediment fingerprinting studies including geochemical elements (Collins et al, 2012; Lamba et al, 2015; Liu et al, 2016a; Gholami et al, 2017b), geochemical indicators (Vale et al, 2016), isotopic reatios (Douglas et al, 1995), radionuclides (Walling et al, 1999; Olley et al, 2012), organic elements (Walling et al, 1999; Gellis et al, 2009), magnetic properties (Russell et al, 2001) and physical signatures (Kouhpeima et al, 2010). MethodologySediment fingerprinting applied to quantifying source contributions of sand dune sediments in the Jazmurian region, south of Kerman. In order to, we collected 58 surficial samples from potential sources including 7 samples from Qs, 25 samples from Qal, 5 samples from Qt and 21 samples from Qc; and also, 14 samples collected from Qsd as sediment region. Then, 10 tracers including Ni, Cu, Co, Cr, Ga, Mn, P, Ba, Sr and Li measured at each samples. For discriminating sources of sand dune sediments applied a twostage statistical procedure including KruskalWallis and stepwise Discriminant Function Analysis. Finally, source contribution of sand dune sediments quantified using two mixing models including Collins et al, (1997) and Hughes et al, (2009). In all mixing models, the objective is to determine the source contribution for Aeolian sediment samples by minimizing the errors. Solutions to this models are obtained by finding values for proportional source contributions that minimize the calculated difference between the mean tracer concentrations in potential source and sediment samples (Smith et al., 2013). For calculating of optimum contributions, we used SOLVER tools in the Excel.Results and DiscussionsResults of twostage statistical procedure showed that all 10 tracers are capable to discriminating sources of sand dune and results from second step showed that four tracers Cr, Ni, Co and Li were selected as optimum composite fingerprints as entrance parameters to mixing models. According to two mixing models results, Qs recognized as dominant source for seven sediment samples and also, Qal provided the most contributions for six sediment samples. GOF values ranged between 80 to 98% for both Collins and Hughes mixing models. Several researchers used a GOF for assessing results of Collins mixing model to sediment fingerprinting (e.g., Collins et al, 2010; Haddadchi et al, 2013; Collins et al, 2013; Stone et al, 2014; Lamba et al, 2015; Liu et al, 2016b). ConclusionMixing models used in the sediment fingerprinting are effective tools for quantifying of source contribution of Aeolian sediments. Here, we applied a sediment fingerprinting technique to quantifying source contributions of sand dune sediments. Four optimum composite fingerprints generated highly acceptable GOF values for all four mixing models using the local optimization approach in the Solver. Qs and Qal recognized as major sources supplying sediments for sand dunes in the Jazmurian region. Based on GOF results, Collins mixing model was more efficient to Hughes mixing model to quantify source contributions. Finally, we suggests applying Collins mixing model to quantifying source contributions of sand dune sediments at other regions with active sand dunes.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|