>
Fa   |   Ar   |   En
   Static Persian Sign Language Recognition Using Kernel-Based Feature Extraction  
   
نویسنده Moghaddam Milad ,Nahvi Manoochehr ,PR. Hasanzadeh Reza
منبع international journal of information and communication technology research - 2011 - دوره : 4 - شماره : 1 - صفحه:21 -28
چکیده    Abstract— the most effective way for deaf people communication is sign language. since most people are not familiar with this language, there is a requirement for a sign language translator system. this would be a useful tool specifically in emergency situations. a further need is facilitation of deaf people communication in cyberspace. sign language gestures can be divided in two groups, including gestures represent the alphabets and those which are arbitrary signs representing specific concepts. the first group is usually introduced by the pose of hands and they are called postures while the second group usually includes motion of the hands. this paper evaluates the efficiency of kernel based feature extraction methods including kernel principle component analysis (kpca) and kernel discriminant analysis (kda) on persian sign language (psl) postures. to compare the impact of features on signs’ recognition rate, classifiers such as minimum distance (md), support vector machine (svm) and neural network (nn) is used. experimental trials indicate higher recognition rate for the kernel-based methods in comparison with those of other techniques and also previous works on psl recognition.
کلیدواژه Pattern recognition; feature extraction; kernel-ba
آدرس university of guilan, DSP Research Lab, Department of Electrical, ایران, university of guilan, DSP Research Lab, Department of Electrical Engineering, ایران, university of guilan, DSP Research Lab, Department of Electrical Engineering, ایران
پست الکترونیکی hasanzadehpak@guilan.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved