|
|
تبیین ساختاری پیشرانهای موثر در مدیریت محیط زیست استان خراسان جنوبی
|
|
|
|
|
نویسنده
|
جهانی شکیب فاطمه ,عرفانی ملیحه ,یوسفی روبیات الهام
|
منبع
|
آمايش فضا و ژئوماتيك - 1399 - دوره : 24 - شماره : 1 - صفحه:109 -127
|
چکیده
|
در شرایط ایران، فرصت زمانی برای اصلاح جهتگیریهای مدیریتی در حوزهی محیط زیست محدود است و از طرفی، حتی دستگاههای ذیربط اولویتهای خود را بهتفکیک نمیدانند و یا از ارتباط اولویتها با سایر دستگاهها و در سطح کلان طرح توسعهی استان آگاه نیستند. در چنین شرایطی، معرفی پیشرانهای مهم در حوزهی محیط زیست اولین و اساسیترین گام برای هدایت بخشیدن به سناریوهای مدیریتی صحیح در آینده است. بدیهی است که باتوجه به جنبههای مختلف محیط زیست، پیشرانهای بسیار متنوعی نیز مطرح است که بررسی همهی آنها ممکن نیست. بنابراین، در این مطالعه، به غربالگری پیشرانها براساس میزان تاثیرگذاری و تاثیرپذیری از سایر پیشرانها، به عنوان پیشرانهای موثر، کلیدی و درعینحال مستقل از سایر پیشرانها در حوزهی مدیریت محیط زیست در استان خراسان جنوبی توجه شد. روش بهکاررفته در این پژوهش، غربالگری پیشران ها و تحلیل ساختاری micmac است که برای انجام آن، از نظرات متخصصین دانشگاهی و دستگاههای اجرایی مرتبط استفاده شد. براساس نتایج، مهمترین پیشرانها در اثرات مستقیم و غیرمستقیم و اثرات احتمالی که باتوجه به آنها تحولات آینده کنترل میشود، پنج مورد بودند. این پیشران ها به ترتیب اهمیت عبارتاند از: ایجاد ضمانت اجرایی قوانین مربوطه، همکاریهای بیندستگاهی، گردش آزاد اطلاعات، تغییر نگرش تصمیمگیران و جایگیری درست سازمان محیط زیست در تصمیم گیریها. جمع اثرات مستقیم و غیرمستقیم و محتمل پیشرانها به ترتیب 3007، 2805، 2135، 1938 و 1572 برآورد شد. نرخ پرشدگی ماتریس اثرات 23.86 درصد است که شامل 153 عدد 1 (اثرات ضعیف)، 113 عدد 2 (اثرات متوسط)، 89 عدد 3 (اثرات قوی) و 8 حرف p (اثرات احتمالی) میشود. همچنین 9 پیشران با وابستگی زیاد و تاثیرگذاری کم (پیشران های پاسخ و یا خروجی) شناسایی و معرفی شدند که پایش وضعیت آنها به عنوان معیاری برای سنجش میزان موفقیت مدیریت پیشنهاد داده میشود. نتایج این مطالعه ممکن است مورد توجه مدیران و تصمیمگیران برای اولویتبندی اهداف، سیاستها و فعالیتها قرار گیرد.
|
کلیدواژه
|
تحلیل ماتریس اثرات، اثرگذاری، تاثیرپذیری، مدیریت محیط زیست، استان خراسان جنوبی
|
آدرس
|
دانشگاه بیرجند, دانشکده منابع طبیعی و محیط زیست, ایران, دانشگاه زابل, گروه محیط زیست, ایران, دانشکده منابع طبیعی و محیط زیست, ایران
|
|
|
|
|
|
|
|
|
|
|
Explanation of Effective Drivers in Environmental Management of South Khorasan Province Using Structural AnalysisExplanation of Effective Drivers in Environmental Management of South Khorasan Province Using Structural Analysis
|
|
|
Authors
|
Jahanishakib Fatemeh ,Erfani Maliheh ,Yusefi Rubiat Elham
|
Abstract
|
Introduction In Iran,time is limited and it is always too late to modify management attitudes in the fields of environment. On the one hand, the relevant agencies do not even know their priorities separately or are unaware relationship of their priorities with other agencies, while at the macro level, they are unaware of the provincechr('39')s development plan. So, important drivers in the field of environment are the first and most important steps in guiding scenarios of proper management.Methodology First, a list of effective drivers of environmental management in the South Khorasan province was collected from some specialist and experts using Delphi, followed by twodimensional matrices containing quantitative matrices to quantify the driver rsquo;s relationships and interpretations. The axes of influence and dependence are were used. Therefore, according to the position of each driver with these two criteria in the matrix, five types of drivers are defined. Drivers screening based on the degree of influence and dependence of other drivers as effective , key and independent drivers in the field of environmental management in South Khorasan province were studied. The method used was MicMac Structural Analysis, which was used by academic experts and related executives. In so doing, the team created a common language which will served them as the process continued. In most cases, it also allowed the team to redefine certain variables and refine the analysis of the system. Lastly, experience shows that the ideal percentage of the matrix to be filledin is around 20%.Comparing the rankings of the variables from the various classifications (direct, indirect and potential) is a rich source of information. It allows the team to confirm the importance of certain variables as well as to reveal those variables which play a dominant role in the system, and which would have remained undetected if they had only been compared directly. The information obtained by influence and dependence of each of the variables can be displayed in twodimensional diagrams containing the vertical (affective) and horizontal (affective) axes. This method can identify the most effective drivers in the system and study the different roles played by these drivers (Godet Durance, 2011).Results and discussionBy aggregating and analyzing the views of a panel of experts in the field who know the topic in MicMac 39 software, drivers were identified as key, effective, effective and dependence drivers. The comments were considered as MicMac inputs, with a filling rate of 23.86% including 153 one (weak influence), 113 two (moderate influence), 89 three (strong influence) and 8 to P (possible influence). The sum of direct and indirect and probable influence of drivers were estimated to be 3007, 2805, 2135, 1938 and 1572, respectively. This matrix has 100% stability with two replications which shows high validity of the questionnaire and its answers. The direct influence (a) and indirect (b) influence of the drivers on each other are shown in Fig. 1. Driver 5 (D5: creating environmental law enforcement and warranties) and D1 (cooperation between related agencies to prevent any rework) in four ways are among the most effective and determining factors. In the next step, the influence of the drivers of the free flow of information and sharing the results of studies of all environmentalrelated organizations to public or academic expertise (D33), changing the real attitude of decisionmakers in embracing intellectual physical potential, and creative indigenous peoples of the region (D29) and the environmental agencychr('39')s correct placement in decision making (before doing the project and any action not after it is finalized or completed!) (D6) were more influence drivers respectively.Given that the distribution of drivers is in the axis of influence and dependency as L shape, the system under study is balanced and it is possible to make planning for such a system (Arcade et al., 1999; Erfani and Mircheraghkhani, 2018)Conclusion Five main and key drivers of the system under study were identified, the first two of which relate to political and institutional domains that are in line with Erfani and Mircheraghkhani rsquo;s (2018) study. In this study, monitoring of nine identified response drivers is the main indicator for revealing the province rsquo;s environmental management status, which is recommended for future studies. These indicators can explain the environmental status of the province and can be considered as a criterion for determining the actual performance and efficiency of the agencies. It is also recommended to continue the present study and to complete four more steps from the LIPSOR School to identify conflicts of interest between relevant stakeholders, scenarios building and predict the future. Each year, the performance statistics of the agencies are presented based on the indicators set by the agencies themselves and the overhead agencies, and they are more likely to be defined in a way that may not adequately represent the agencies rsquo; performance, and thus make the agencies less judgmental to fall. For example, the index of mountain tenure has clearly increased over the last few years. Combating mountain tenure alone does not indicate management efficiency, but rather the absence of mountain tenure and the return of shifting areas given to conditions close to the baseline status is effective either. Therefore, change in decision makerschr('39') attitudes (D6) and efforts in problem solving have been introduced as one of the key drivers in this study (Fig. 1).
|
Keywords
|
Analysis of Impacts Matrix ,influence ,dependence ,South Khorasan Province ,Environmental management
|
|
|
|
|
|
|
|
|
|
|