>
Fa   |   Ar   |   En
   مقایسه توانایی پیش‌بینی نوسان‌های جمعیت سن گندم توسط مدل‌های سیستم استنتاج عصبی-فازی تطبیقی (anfis)، روش سطح پاسخ (rsm) و رگرسیون خطی چند متغیره  
   
نویسنده دوستی زهرا ,معینی نقده ناصر ,زمانی عباسعلی ,ندرلو لیلا
منبع تحقيقات آفات گياهي - 1397 - دوره : 8 - شماره : 3 - صفحه:45 -57
چکیده    سن معمولی گندم یکی از آفات اصلی گندم و از مهم‌ترین مسائل گیاه پزشکی ایران است. از دیرباز مدل‌های رگرسیون خطی چندگانه برای پیش بینی نوسان های جمعیت آفات مختلف با استفاده از متغیرهای محیطی مورد استفاده قرار گرفته‌اند. استفاده از سیستم‌های هوشمند برای تخمین دقیق‌تر نوسان های جمعیت حشرات می‌تواند نتایج بهتری را به همراه داشته باشد. بنابراین مطالعه‌ای با هدف پیش بینی نوسان های جمعیت سن گندم با استفاده از سیستم استنتاج فازی عصبی تطبیقی، روش سطح پاسخ و رگرسیون خطی چند متغیره انجام شد. این پژوهش طی سال‌های 1394و 1395 در دو مزرعه گندم آبی یک هکتاری در شهرستان چادگان انجام شد. در این مدل‌ها، میانگین دما، میانگین رطوبت نسبی، بارش، سرعت و جهت باد، روز نمونه برداری، روز درجه و ارتفاع از سطح دریا به عنوان متغیرهای پاسخ استفاده شدند. داده‌های جمع آوری شده به صورت تصادفی به دو دسته آموزش (70 درصد) و آزمون (30 درصد) تقسیم شدند و از آن‌ها برای آموزش و ارزیابی مدل‌های انفیس، روش سطح پاسخ و همچنین رگرسیون خطی استفاده شد. دقت پیش بینی به وسیله آماره‌های r^2و rmse ارزیابی شد. نتایج، کارایی بالاتر مدل انفیس )0.0614, rmse= 0.93= (r^2و روش سطح پاسخ )0.0836, rmse= 0.88= (r^2را نسبت به مدل رگرسیون خطی چند متغیره )0.23, rmse= 0.34= (r^2نشان داد. همچنین تحلیل حساسیت حاکی از آن بود که میانگین دما، رطوبت نسبی، سرعت باد و روز نمونه برداری پارامترهای موثر بر پیش بینی تراکم سن مادر بودند.
کلیدواژه مدل‌های پیش‌آگاهی،eurygaster integriceps، انفیس، عوامل اقلیمی، چادگان
آدرس دانشگاه رازی, دانشکده کشاورزی, گروه گیاه‌پزشکی, ایران, دانشگاه رازی, دانشکده کشاورزی, گروه گیاه‌پزشکی, ایران, دانشگاه رازی, دانشکده کشاورزی, گروه گیاه‌پزشکی, ایران, دانشگاه رازی, دانشکده کشاورزی, گروه مهندسی مکانیک بیوسیستم, ایران
 
   Comparing the ability of ANFIS, RSM and multiple linear regression models for estimation of Eurygaster integriceps population  
   
Authors Dustiy Z. ,Moeini-Naghadeh N. ,Zamani A. A. ,Naderloo L.
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved