|
|
استخراج کلیدواژگان پایاننامۀ فارسی با استفاده از ویژگی آماری و دستهبند بیز
|
|
|
|
|
نویسنده
|
حجازی بهزاد ,نصیری جلال الدین
|
منبع
|
جستارهاي زباني - 1400 - دوره : 12 - شماره : 6 - صفحه:339 -367
|
چکیده
|
هدف اصلی استخراج کلمات کلیدی انتخاب مجموعهای از لغات در متن است که میتواند موضوع اصلی متن را بازگو کند. استخراج کلیدواژگان در بازیابی اطلاعات، سیستمهای پیشنهاددهندۀ متنی و دستهبندی متون، نقش مهم را ایفا میکند. در زبان فارسی باتوجه به پیچیدگی ذاتی زبان فارسی استخراج کلیدواژگان بهمراتب دشوارتر شده است. در این پژوهش سعی شده است با رویکرد نوین ترکیبی آماری و یادگیری ماشین به استخراج کلیدواژگان پرداخته شود. ابتدا باتوجه به ساختار زبان فارسی پیش پردازهای لازم برای حذف کلمات و علائم نگارشی صورت میگیرد. سپس با استفاده از سه نوع ویژگی آماری و دسته بند بیز سیستم بهصورت خودکار الگوی کلمات کلیدی با کلمات عادی را آموزش میبیند. همچنین پس پردازش کارا برای کم کردن کلمات مثبت کاذب در چارچوب پیشنهادی طراحی شده است. گفتنی است که مدل ساختهشده قادر به شناسایی تعداد حداکثر 20 کلیدواژه در هر پایاننامه است و این کلمات با کلیدواژگان نوشتهشده در هر متن مقایسه و ارزیابی میشوند. نتایج ارزیابیهای متنوع نشان می دهد روش پیشنهادی با دقت مناسبی توانسته است کلمات کلیدی نوشتارهای فارسی علمی (پایان نامه و رساله) را استخراج کند.
|
کلیدواژه
|
استخراج کلیدواژگان، دستهبند بیز، ویژگیهای آماری، پیشپردازش، پسپردازش
|
آدرس
|
دانشگاه آزاد اسلامی واحد تهران شمال, ایران, دانشگاه فردوسی مشهد, دانشکدۀ علوم ریاضی, ایران
|
پست الکترونیکی
|
j.nasiri@irandoc.ac.ir
|
|
|
|
|
|
|
|
|
Keywords Extraction from Persian Thesis Using Statistical Features and Bayesian Classification
|
|
|
Authors
|
Hejazi Behzad ,Nasiri Jalal A.
|
Abstract
|
Keyword extraction aims to extract words that are able to represent the corpus meaning. Keyword extraction has a crucial role in information retrieval, recommendation systems and corpora classification. In Persian language, keyword extraction is known as hard task due to Persian rsquo;s inherent complication. In this research work, we aim to address keyword extraction with a combination of statistical and Machine Learning as a novel approach to this problem. First the required preprocessing is applied to the corpora. Then three statistical methods and Bayesian classifier was utilized to the corpora to extract the keywords pattern. Also, a post processing methods was used to decrease the number of True Positive outputs. It should be pointed out that the built model can extract up to 20 keywords and they will be compared with keywords in the corresponding corpus. The evaluation results indicate that the proposed method, could extract keywords from scientific corpora (Specifically Thesis and Dissertations) with a good accuracy.1. IntroductionAutomated keyword extraction is the process of identifying document terms and phrases that can appropriately represent the subject of our writing. With the proliferation of digital documents today, extracting keywords manually can be impractical. Many applications such as autoindexing, summarization, autoclassification, and text filtering can benefit from this process since the keywords provide a compact display of the text. Automated keyword generation can be broadly classified into two categories: keyword allocation and keyword extraction.In keyword allocation, a set of potential keywords is selected from a set of controlled vocabularies, while keyword extraction examines the words in the text. Keyword extraction methods can be broadly classified into four groups: statistical approaches, linguistic approaches, machine learning approaches, and hybrid approaches. 2. Literature Reviewworking on Persian words is a big challenge for the paucity of sufficient research. The inadequacy of text preprocessing programs has made it more complex than the Latin language. Also, the presence of large dimensions of input data is one of the challenges that has always arisen in such researches and this problem becomes more apparent due to the variety of Persian written forms (Gandomkar, 2017, p. 233:256). In Moin Maedi #39;s article (2015, p. 34:42) A method for extracting keywords in Persian language is presented. This article extracts keywords from each text separately and without seeing another text as training data.In the article by Mohammad Razaghnouri (2017, P. 16:27) using the Word2Vec method and the TIFIDIF frequency, they created a question and answer system in Persian, which is a new work due to the use of Word2Vec in Persian. However, with size reduction techniques and Word2Vec, this 72% success rate can be enhanced in the future.3. MethodologyAccordingly, the current paper examines the integration of statistical keyword extraction methods with the Naive Bayes Classifier. Initially, we integrated input texts which are dissertations in Persian by using preprocessing (deletion of stop words, etymology, etc.) methods. Then, using the available statistical features, each word has been given a certain weight. Then, the valuable words of each text were selected and the proposed model was taught using the selected category, then the selected words were processed by the trained model, and at the end, the words extracted from the final model were evaluated using the keywords suggested by the authors themselves. Figure 1 depicts all the steps performed. 4. ResultsLiterature review shows that this is the first time that these combinations are used to extract Persian keywords, so that unlike other studies, each text is as a sample for category input and words as its properties, however, in this paper the words of each text input are categorized and words are extracted using statistical methods that are considered as features. The choice of keywords by the authors has always been a personal decision and people may not make a single decision to choose a set of words for a single text. Figure 1Proposed research framework for keyword extraction Create unigramsRooting normalization and bygrams The current paper attempts to create a model and program with a new approach, due to the small number of input documents, which to extract keywords without dependence on the orientation of dissertations and the meaning of their words and only by using statistical features of words in each text. According to Tables 1 and 2, the developed model is able to extract a maximum of 20 keywords from each dissertation with an overall accuracy of 98.1%, in best condition which that is the use of a maximum frequency feature. The keywords written in each dissertation with 84% and 98% accuracy, correspond to oneword and twoword expressions, respectively.Table 1 Evaluation criteria for Bayesian outputs in different states of statistical FeaturesPrecisionF1ScoreRecallAccuracyStatistical Features0.980.980.9897.2%Tf_Idf, Most Frequent, Tf_Isf0.990.990.98298.1%Most Frequent0.990.940.9199.8%Tf_Idf, Tf_Isf Table 2 Evaluation of postprocessing test data for outputs that have been categorized by keyword Number of keywords that selected by writersNumber of wordsPrecisionF1ScoreRecallStatistical FeaturesStep422100.20.3230.84Most FrequentUniGrams341580.80.8880.98Most FrequentByGrams .
|
Keywords
|
Extraction ,Bayesian Classification ,statistical features ,preprocessing ,post-processing
|
|
|
|
|
|
|
|
|
|
|