|
|
Lw*wc AND Rw*wc AND WEAK AMENABILITY OF BANACH ALGEBRAS
|
|
|
|
|
نویسنده
|
Haghnejad Azar Kazem ,Ranjbar Zari
|
منبع
|
journal of hyperstructures - 2012 - دوره : 1 - شماره : 2 - صفحه:61 -70
|
چکیده
|
We introduce some new concepts as left-weak*-weak convergence property [lw*wc-property] and right-weak*-weak convergence property [rw*wc-property] for banach algebra a. suppose that a and a**, respectively, have rw*wc-property and lw*wc-property, then if a** is weakly amenable, it follows that a is weakly amenable. let d : ato a** be a surjective derivation. if d'' is a derivation, then a is arens regular.
|
کلیدواژه
|
Amenability ,Weak amenability ,Derivation ,Arens regularity ,Topological centers ,Module actions ,Left-weak*-to-weak convergence
|
آدرس
|
university of mohaghegh ardabili, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, ایران, university of mohaghegh ardabili, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, ایران
|
پست الکترونیکی
|
ranjbar.raha@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|