>
Fa   |   Ar   |   En
   Lw*wc AND Rw*wc AND WEAK AMENABILITY OF BANACH ALGEBRAS  
   
نویسنده Haghnejad Azar Kazem ,Ranjbar Zari
منبع journal of hyperstructures - 2012 - دوره : 1 - شماره : 2 - صفحه:61 -70
چکیده    We introduce some new concepts as left-weak*-weak convergence property [lw*wc-property] and right-weak*-weak convergence property [rw*wc-property] for banach algebra a. suppose that a and a**, respectively, have rw*wc-property and lw*wc-property, then if a** is weakly amenable, it follows that a is weakly amenable. let d : ato a** be a surjective derivation. if d'' is a derivation, then a is arens regular.
کلیدواژه Amenability ,Weak amenability ,Derivation ,Arens regularity ,Topological centers ,Module actions ,Left-weak*-to-weak convergence
آدرس university of mohaghegh ardabili, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, ایران, university of mohaghegh ardabili, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, ایران
پست الکترونیکی ranjbar.raha@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved