|
|
حل مسئلهی مسیریابی با ناوگان ناهمگون با استفاده از الگوریتم بهینهسازی ذرات چندهدفه
|
|
|
|
|
نویسنده
|
بادلی عباس ,شفائی رسول
|
منبع
|
مهندسي صنايع و مديريت شريف - 1395 - دوره : 32-1 - شماره : 2/1 - صفحه:3 -10
|
چکیده
|
در مسئلهی مسیریابی، هدف یافتن مسیرهای بهینه برای وسایل نقلیهیی است که باید خدمات مورد نیاز مشتریان را با کمترین هزینه ارائه کنند. در این نوشتار مسئلهی مسیریابی با ناوگان حملونقل ناهمگون با هدف کمینهسازی هزینهی حملونقل ناهمگون و هزینهی نگهداری وسایل حملونقل مورد بررسی قرار گرفته است. مسئلهی بررسی شده با معیار دوهدفه مسیریابی با ناوگان حملونقل ناهمگون و کمینهسازی مجموع زمان سفر و زمانهای تاخیر حل شده است. برای این منظور از روش فراابتکاری بهینهسازی انبوه ذرات چندهدفه استفاده شده است. این مسئله بهازای دو دسته مسئلهی کوچک و بزرگ حل شده است. اعتبارسنجی مسئلهی پیشنهادی با استفاده از نرمافزار گمز و بهازای مسائل کوچک انجام شده است. نتایج حاصل از این مطالعه بیانگر کارایی بالای الگوریتم پیشنهادی است.
|
کلیدواژه
|
مسیریابی وسایل نقلیه، ناوگان حملونقل ناهمگون، موعد تحویل، بهینهسازی دوهدفه، الگوریتم بهینهسازی انبوه ذرات چندهدفه
|
آدرس
|
دانشگاه صنعتی خواجه نصیرالدین طوسی, دانشکدهی مهندسی صنایع, ایران, دانشگاه صنعتی خواجه نصیرالدین طوسی, دانشکدهی مهندسی صنایع, ایران
|
پست الکترونیکی
|
shafaei@kntu.ac.ir
|
|
|
|
|
|
|
|
|
SOLVING ROUTING PROBLEM WITH HETEROGENEOUS FLEET BY MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION
|
|
|
Authors
|
|
Abstract
|
In vehicle routing problem (VRP), the objective is to find the optimum routes for a fleet of vehicles in order to serve a set of customers. These routes should have minimum costs including distance and time, and they should simultaneously satisfy some restrictions such as the maximum capacity of each vehicle, the maximum distance for each vehicle to travel, the time window to visit the specific customer, and so forth. Most enterprises own a heterogeneous fleet of vehicles or hire different types of vehicles to serve their customers. The heterogeneous fleet VRP (HFVRP) addresses the VRP with a heterogeneous fleet of vehicles which have various capacities: fixed costs and variable costs. To the best of our knowledge, all researches in this field have studied the minimization of total traveling time and traveling cost as objectives, while one of the important subjects in the real word is tardiness. In studying tardiness, we assign a due time as an upper bound; if the vehicle reaches the customer after the due time, tardiness will occur. The other important object in HFVRP is the holding cost. In order to have a balance between holding cost and traveling time, we have considered holding cost to solve the problem when a vehicle is selected. So, in this research, we will solve a biobjective HFVRP with respect to minimizing total traveling time, tardiness, and total holding cost as an objective function. Many algorithms have developed to solve vehicle routing problems, such as genetic algorithm, ant colony optimization, and simulated annealing. For small problem with three vehicles, problem is solved through GAMS and validity of model is proved. For the largesized problem, because of the complexity, problem is solved with MultiObjective particle swarm optimization, and then numerical result is presented in the research. The results show that by changing the value of holding cost, the fleet and routes will be changed, and MOPSO finds good answers in short time.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|