|
|
new lower bound for numerical radius for off-diagonal 2 × 2 matrices
|
|
|
|
|
نویسنده
|
moosavi b. ,shah hosseini m.
|
منبع
|
journal of linear and topological algebra - 2024 - دوره : 13 - شماره : 1 - صفحه:13 -18
|
چکیده
|
new norm and numerical radius inequalities for operators on hilbert space are given. among other inequalities, we prove that if $ a, b in b(h) $, then [vert a vert - frac{3 vert a-b^* vert }{2} leq omegaleft(left[begin{array}{cc} 0 a b 0 end{array}right]right).] moreover, $omega(ab) leq frac{3}{2} vert im(a) vert vert b vert + d_{b}; omega(a) $. in particular, if $ a $ is self-adjointable, then $omega(ab) leq d_{b} vert a vert$, where $d_{b}=underset{lambda in mathbb{c}}{mathop{inf}},left| b-lambda i right|$.
|
کلیدواژه
|
hilbert space ,norm inequality ,numerical radius ,bounded linear operator
|
آدرس
|
islamic azad university, safadasht branch, department of mathematics, iran, islamic azad university, shahr-e-qods branch, department of mathematics, iran
|
پست الکترونیکی
|
mohsen_shahhosseini@yahoo.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|