>
Fa   |   Ar   |   En
   new lower bound for numerical radius for off-diagonal 2 × 2 matrices  
   
نویسنده moosavi b. ,shah hosseini m.
منبع journal of linear and topological algebra - 2024 - دوره : 13 - شماره : 1 - صفحه:13 -18
چکیده   

new norm and numerical radius inequalities for operators on hilbert space are given. among other inequalities, we prove that if $ a, b in b(h) $, then [vert a vert - frac{3 vert a-b^* vert }{2} leq omegaleft(left[begin{array}{cc} 0 a b 0 end{array}right]right).] moreover, $omega(ab) leq frac{3}{2} vert im(a) vert vert b vert + d_{b}; omega(a) $. in particular, if $ a $ is self-adjointable, then $omega(ab) leq d_{b} vert a vert$, where $d_{b}=underset{lambda in mathbb{c}}{mathop{inf}},left| b-lambda i right|$.

کلیدواژه hilbert space ,norm inequality ,numerical radius ,bounded linear operator
آدرس islamic azad university, safadasht branch, department of mathematics, iran, islamic azad university, shahr-e-qods branch, department of mathematics, iran
پست الکترونیکی mohsen_shahhosseini@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved