|
|
reverses of the first hermite-hadamard type inequality for the square operator modulus in hilbert spaces
|
|
|
|
|
نویسنده
|
dragomir s. s.
|
منبع
|
journal of linear and topological algebra - 2022 - دوره : 11 - شماره : 1 - صفحه:1 -13
|
چکیده
|
let (h;⟨⋅,⋅⟩) be a complex hilbert space. denote by b(h) b(h) the banach c^∗ -algebra of bounded linear operators on h . for a∈b(h) we define the modulus of a by |a|:=(a∗a)1/2 and funcrea:=12(a∗+a). . in this paper we show among other that, if a, b∈b(h) with 0≤m≤|(1−t)a+tb|^2≤m for all t∈[0,1], then 0≤∫1_0f(|(1−t)a+tb|2)dt−f(|a|2+funcre(b∗a)+|b|23)≤2[f(m)+f(m)2−f(m+m2)]1h for operator convex functions f:[0,∞)→r . applications for power and logarithmic functions are also provided
|
کلیدواژه
|
operator convex functions ,hermite-hadamard inequality ,midpoint inequality ,operator power and logarithmic functions
|
آدرس
|
victoria university, college of engineering & science, australia. university of the witwatersrand, dst-nrf centre of excellence in the mathematical and statistical sciences, school of computer science & applied mathematics, south africa
|
پست الکترونیکی
|
sever.dragomir@vu.edu.au
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|