>
Fa   |   Ar   |   En
   reverses of the first hermite-hadamard type inequality for the square operator modulus in hilbert spaces  
   
نویسنده dragomir s. s.
منبع journal of linear and topological algebra - 2022 - دوره : 11 - شماره : 1 - صفحه:1 -13
چکیده    ‎let (h;⟨⋅‎,‎⋅⟩) be a complex‎ ‎hilbert space‎. ‎denote by b(h) b(h) the banach c^∗ -‎algebra of bounded linear operators on h ‎. ‎for a∈b(‎h) we define the modulus of a by |a|‎:‎=(‎a∗a)1/2 and funcrea:=12(a∗‎‎+a)‎.‎ .‎ in this paper we show among other that‎, ‎if a, b∈‎‎b(h) with 0≤m≤|(1−t)‎‎a+tb|^2≤m for all t∈[0,1]‎,‎ then ‎‎0‎‎≤∫1_0f(|(1−t)a+tb|‎‎2)dt−f(|a|2+funcre(‎‎b∗a)‎+‎|b|23)≤2[f(m)‎+‎f(m)2−f(‎m+m2)]1h‎‎ ‎‎‎for operator convex functions f:[0,∞)→r ‎. ‎applications for power and logarithmic functions are also provided‎
کلیدواژه operator convex functions ,hermite-hadamard inequality ,midpoint inequality ,operator power and logarithmic functions
آدرس ‎victoria university‎, ‎college of engineering & science‎, australia. university of the witwatersrand, dst-nrf centre of excellence in the mathematical and statistical sciences, school of computer science & applied mathematics, south africa
پست الکترونیکی sever.dragomir@vu.edu.au
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved