|
|
a class of (2m-1)-weakly amenable banach algebras
|
|
|
|
|
نویسنده
|
yegan m.
|
منبع
|
journal of linear and topological algebra - 2021 - دوره : 10 - شماره : 3 - صفحه:234 -239
|
چکیده
|
let ${a}$ be a banach space and ${lambda}$ be a nonzero fixed element of ${a}^{ast}$(dual space of ${a}$) with nonzero kernel. defining algebra product in $a$ as $acdot b=lambda(a)b$ for $a,bin {a}$, we show that ${a}$ is a $(2m1)$weakly amenable banach algebra but not $2m$weakly amenable for any $min{n}$. furthermore, we show the converse of the statement [2,~proposition,1.4.(ii)] ``for a nonunital banach algebra $a$, if $a$ is weakly amenable then $a^{#}$ is weakly amenable does not hold.
|
کلیدواژه
|
banach algebras ,cohomology group ,weakly amenable
|
آدرس
|
imam ali university, faculty of basic sciences, department of mathematics, iran
|
پست الکترونیکی
|
mryegan@yahoo.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|