>
Fa   |   Ar   |   En
   characterization of (δ, ε)-double derivations on rings and algebras  
   
نویسنده jokar z. ,niknam a.
منبع journal of linear and topological algebra - 2017 - دوره : 6 - شماره : 3 - صفحه:191 -198
چکیده    This paper is an attempt to prove the following result:let n>1 be an integer and let r be a n!-torsion-free ring with the identity element. suppose that d,δ,ε are additive mappings satisfying d(xn)=∑j=1nxn−jd(x)xj−1+∑j=1n−1∑i=1jxn−1−j(δ(x)xj−iε(x)+ε(x)xj−iδ(x))xi−1 for all x∈r. if δ(e)=ε(e)=0, then d is a jordan (δ,ε)-double derivation. in particular, if r is a semiprime algebra and further, δ(x)ε(x)+ε(x)δ(x)=12[(δε+εδ)(x2)−(δε(x)+εδ(x))x−x(δε(x)+εδ(x))] holds for all x∈r, then d−δε+εδ2 is a derivation on r.
کلیدواژه derivation ,jordan derivation ,(δ ,ε)-double derivation ,n-torsion free semiprime ring
آدرس islamic azad university, mashhad branch, department of mathematics, iran, ferdowsi university of mashhad, center of excellence in analysis on algebraic structures (ceaas), department of mathematics, iran
پست الکترونیکی dassamankin@yahoo.co.uk
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved