|
|
non-additive lie centralizer of infinite strictly upper triangular matrices
|
|
|
|
|
نویسنده
|
hadj d. a. aiat
|
منبع
|
journal of linear and topological algebra - 2019 - دوره : 8 - شماره : 4 - صفحه:251 -255
|
چکیده
|
let $mathcal{f}$ be an field of zero characteristic and $n_{infty}(mathcal{f})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{f}$, and $f:n_{infty}(mathcal{f})rightarrow n_{infty}(mathcal{f})$ be a nonadditive lie centralizer of $n_{infty }(mathcal{f})$; that is, a map satisfying that $f([x,y])=[f(x),y]$ for all $x,yin n_{infty}(mathcal{f})$. we prove that $f(x)=lambda x$, where $lambda in mathcal{f}$.
|
کلیدواژه
|
lie centralizer ,strictly upper triangular matrices ,commuting map
|
آدرس
|
centre regional des metiers d'education et de formation (crmef), department of mathematics, morocco
|
پست الکترونیکی
|
ait_hadj@yahoo.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|