>
Fa   |   Ar   |   En
   Bayesian Logistic Regression Model Choice via Laplace-Metropolis Algorithm  
   
نویسنده ESKANDARI FARZAD ,MESHKANI M.REZA
منبع journal of the iranian statistical society - 2006 - دوره : 5 - شماره : 1-2 - صفحه:9 -24
چکیده    Following a bayesian statistical inference paradigm, weprovide an alternative methodology for analyzing a multivariate logisticregression. we use a multivariate normal prior in the bayesiananalysis. we present a unique bayes estimator associated with a priorwhich is admissible. the bayes estimators of the coefficients of themodel are obtained via mcmc methods. the proposed procedureis illustrated by analyzing a data set which has previously been analyzedby various authors. it is shown that our model is more preciseand computationally less taxing.
کلیدواژه Bayes ,bayesian model selection ,Laplace-Metropolisalgoritb m. logist.ic regression. multinomial distriburiou.
آدرس allameh tabataba-i university, DEPARTMENT OF STATISTICS, ایران, shahid beheshti university, DEPARTMENT OF STATISTICS, ایران
پست الکترونیکی m-meshkani@sbu.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved