>
Fa   |   Ar   |   En
   Stochastic system identification via particle and sigma-point  
   
نویسنده Eftekhar Azam ,S. ,Bagherinia M. ,Mariani S.
منبع scientia iranica - 2012 - دوره : 19 - شماره : 41 - صفحه:982 -991
چکیده    In this paper, joint identification for structural systems, characterized by severe nonlinearities(softening) in the constitutive model, is pursued via the sigma-point kalman filter (s-pkf) and the particlefilter (pf). since a formal proof of the effects of softening in a stochastic structural system on the accuracyand stability of the filters is still missing, we comparatively assess the performances of s-pkf and pf. weshow that the pf displays a higher convergence rate towards steady-state model calibrations and the s-pkfis less sensitive to the measurement noise. both s-pkf and pf are robust, even if they tend to get unstablewhen a structural failure is triggered.
کلیدواژه System identification; ,Nonlinear constitutive laws; ,Sigma-point Kalman filtering; ,Particle filtering.
آدرس Politecnico di Milano,, ایتالیا, Politecnico di Milano,, ایتالیا, Politecnico di Milano,, ایتالیا
پست الکترونیکی stefano.mariani@polimi.it
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved