>
Fa   |   Ar   |   En
   controlling dna translocation speed through graphene nanopore via plasmonic fields  
   
نویسنده fotouhi bashir ,ahmadi vahid ,abasifard mostafa
منبع scientia iranica - 2018 - دوره : 25 - شماره : 3-F - صفحه:1849 -1856
چکیده    This study proposes a novel plasmonic-based method for controlling translocation speed of dna molecule through a graphene nanopore. dynamic properties of a double-stranded dna molecule passage through a graphene nanopore are investigated by employing molecular dynamics simulation. in addition, the effect of plasmonic fields parallel to the graphene plane on the translocation speed of the dna molecule is studied. the dna translocation speed is calculated for different values of confinement, spectral width, and power of the plasmonic field. results show the potential of the method to control translocation speed of dna via surface plasmons in a graphene nanopore. the plasmonic eld power, confinement depth, and spectral width can increase translocation time of dna up to 107, 62, and 15%. moreover, a strong plasmonic field can trap the dna molecule in the nanopore. the suggested method can be utilized to solve the fast-translocation challenge of the nanopore dna sequencers.
کلیدواژه plasmon ,graphene ,nanopore ,dna ,molecular dynamics (md)
آدرس tarbiat modares university, department of electrical & computer engineering, iran, tarbiat modares university, department of electrical & computer engineering, iran, tarbiat modares university, department of electrical & computer engineering, iran
پست الکترونیکی m.abasifard@modares.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved