|
|
a flexible cell scheduling problem with automated guided vehicles and robots under energy-conscious policy
|
|
|
|
|
نویسنده
|
hemmati far mohammad ,haleh hassan ,saghaei abbas
|
منبع
|
scientia iranica - 2018 - دوره : 25 - شماره : 1-E - صفحه:339 -358
|
چکیده
|
A flexible cell scheduling problem (csp) under timeofuse (tou) electricity tariffs are developed in this study. to apply a kind of energyconscious policy, over cost of onpeak period electricity consumption, limitations on total energy consumption by all facilities, set up time available on each cell, part defect (pert) percentage and the total number of automated guided vehicles (agv) are considered. additionally, an ant colony optimization (aco) algorithm is employed to find a nearoptimum solution of proposed mixed integer linear programming (milp) model with the objective of minimizing the total cost of csp model. since no benchmark is available in the literature, a lower bound is implemented as well to validate the result achieved. moreover, to improve the quality of the results obtained by metaheuristic algorithms, two hybrid algorithms (hga and haco) was proposed to solve the model. for parameter tuning of algorithms, taguchi experimental design method is applied. then, numerical examples are presented to prove the application of the proposed methodology. our results compared with the lower bound and as a result it confirmed that haco was capable to find better and nearer optimal solutions.
|
کلیدواژه
|
cell-scheduling ,automated guided vehicles (agv) ,robots ,energy-conscious policy ,ant colony optimization (aco) ,genetic algorithm (ga) ,taguchi experimental design method
|
آدرس
|
islamic azad university, science and research branch, department of industrial engineering, iran, islamic azad university, qazvin branch, department of industrial & mechanical engineering, iran, islamic azad university, science and research branch, department of industrial engineering, iran
|
پست الکترونیکی
|
a.saghaei@srbiau.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|