>
Fa   |   Ar   |   En
   mean bed shear stress estimation in a rough rectangular channel using a hybrid genetic algorithm based on an artificial neural network and genetic programming  
   
نویسنده sheikh khozani z. ,bonakdari h. ,zaji a.h.
منبع scientia iranica - 2018 - دوره : 25 - شماره : 1-A - صفحه:152 -161
چکیده    The determination of erosion and deposition patterns in channels requires detailed knowledge and estimations of the bed shear stress. in this investigation, the application of a genetic algorithm based artificial (gaa) neural networkand genetic programming (gp) for predicting bed shear stress in a rectangular channel with rough boundaries. several input combinations, fitness functions and transfer functions were investigated to determine the best gaa model. also the effect of various gp operators on estimating bed shear stress was studied. the comparison between the gaa and gp technique abilities in predicting bed shear stress were investigated. the results revealed that the gaa model performs better in predicting the bed shear stress (rmse = 0.0774), as compared to the gp model (rmse = 0.0835).
کلیدواژه artificial neural network ,bed shear stress ,genetic algorithm ,genetic programming ,hybrid soft computing models ,rough rectangular channels
آدرس razi university, department of civil engineering, iran, razi university, department of civil engineering, iran, razi university, department of civil engineering, iran
پست الکترونیکی amirzaji@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved