>
Fa   |   Ar   |   En
   طراحی سیستم انرژی خورشیدی جهت تامین انرژی الکتریکی هواپیمای فوق سبک به‌منظور تشخیص دود و اعلان حریق  
   
نویسنده رادمنش حمید
منبع مهندسي و مديريت انرژي - 1401 - دوره : 12 - شماره : 1 - صفحه:42 -55
چکیده    هدف از این مقاله طراحی و امکان‌سنجی ساخت یک هواپیمای سبک‌وزن خورشیدی است که توانایی پرواز بی‌وقفه به‌مدت 24 ساعت را تنها با تکیه ‌بر انرژی خورشیدی دارد. انرژی مورد نیاز در طول روز با پنل‌های خورشیدی جذب می‌شود؛ مقداری به‌صورت مستقیم برای پرواز استفاده می‌شود و مازاد انرژی، برای پرواز در طول شب در باتری هواپیما ذخیره می‌شود. سپس از این هواپیما برای ماموریت‌هایی که نیاز به مداومت پروازی طولانی است استفاده خواهد شد. به همین منظور یک سیستم تشخیص حریق و اعلان به ایستگاه زمینی طراحی و برای نصب آن در هواپیما تمهیداتی در نظر گرفته شده است. در این مقاله یک روش تحلیلی برای تشکیل مدل پیش‌بینی جرم هواپیما ارائه می‌شود که بر مبنای دخالت دادن تمام ادوات الکتریکی و مکانیکی است، به‌نحوی ‌که بتوان به یک مدل طراحی بهینه دست ‌یافت. این روش تحلیلی، مبتنی بر توازن جرم و انرژی در مراحل مختلف پرواز است. با دخالت دادن نزدیک 30 پارامتر مختلف در این مدل‌سازی، در نهایت با توجه به اهداف تعیین‌شده، به مشخصه‌های طراحی مورد نظر همچون طول بال بهینۀ هواپیما، ظرفیت باتری، ارتفاع پروازی، سطح توان فرستنده و... می‌توان دست‌ یافت. یک چهارچوب شبیه‌سازی الکتریکی معرفی و در نرم‌افزار سیمولینک متلب به‌صورت زمان واقعیاجرا شد که نتایج آن ارائه شده است. برای صحت عملکرد مدل شبیه‌سازی‌شده، یک نمونۀ آزمایشگاهی ساخته شده است و تمام پارامترهای پروازی، الکتریکی و مکانیکی روی آن آزمایش شده است.
کلیدواژه هواپیمای خورشیدی، انرژی خورشیدی، شبیه‌سازی الکتریکی، سلول‌های خورشیدی، حسگر دود، اعلان حریق
آدرس دانشگاه علوم و فنون هوایی شهید ستاری, ایران
پست الکترونیکی hamid.nsa@gmail.com
 
   Solar Energy System Design of Ultralight Aircraft for Smoke Detection and Fire Alarm Proposes  
   
Authors Radmanesh Hamid
Abstract    Introduction: The purpose of this paper is to design and evaluate the construction of a lightweight solar aircraft that is capable of flying continuously for 24 hours relying solely on solar energy. The required energy is absorbed during the day by solar panels, some of which is used directly for flight, and the excess energy is stored in the aircraft battery for overnight flight. The aircraft will, then, be used for missions that require long flight duration. For this purpose, a fire detection and notification system to the ground station has been designed, and arrangements have been made to install it on the aircraft. Method: In this paper, an analytical method for forming an aircraft mass prediction model is presented, which is based on the involvement of all electrical and mechanical devices in order to achieve an optimal design model. This analytical method is based on the balance of mass and energy in different stages of flight. By involving about 30 different parameters in this modeling, finally, according to the set goals, the desired design characteristics such as optimal aircraft wing length, battery capacity, flight altitude, transmitter power level, and so on can be achieved.In the method presented so far, the amount of radiation in the geographical area of ​​Tehran is considered as an average amount throughout the day. Therefore, the information obtained at the end of the output is a solution that makes solar flight possible during that particular day. To achieve the evolution of moment bymoment flight with radiation that changes during the day, it must be possible to monitor all variables and analyze how energy flows on the aircraft from sunset to sunrise and vice versa.Realtime simulation allows the battery charge status to be predictable and the ability to reach the energy margin in the morning to be possible. The next purpose of performing realtime simulation is to observe the analysis of changes in some parameters on uninterrupted flight. For example, by reducing the efficiency of the solar panel area, the amount of damage and its effect on the feasibility of a 24hour continuous flight can be observed. Numerous experiments can also be performed on different flight conditions such as late afternoon, when the battery is fully charged, but the radiation is insufficient for the main flight phase. In fact, this simulation tool is not in addition to the method discussed and is complementary.Results: This simulator has four distinct main parts as follows: The first part is the radiation model and depends on time, the direction of the panels towards the sun, the geographical position on the ground, and the reflection coefficient of the light at the output. The amount of radiation in the output is extracted in watts per square meter W / m ^ 2. The amount of electrical power available is obtained by considering the panel area and cell efficiency and the maximum power detector (MPPT).The second part is power consuming elements such as communication circuits and transmitters and airplane control units that work by receiving electrical energy.The third part is the main stage of the flight, in which along with increasing the altitude, the possibility of energy storage is also considered. The engine tuner block is also responsible for adapting the flight mode between the gliding modes (flight without engine power), the rider, and the main flight level based on the amount of solar power available at the moment.The fourth part involves storing energy in the battery. In this case, the battery status is considered by interfering with the charge and discharge efficiency at maximum capacity.At the intersection of the first three, second and fourth sections, there is a power management block to direct the flowing energy in the right direction. In fact, with the electric power taken from the solar generator and the total power consumption and the difference existing between these two values, the battery is charged or discharged with an extra amount of energy.Conclusion: This paper briefly describes the type of drone operation and the configuration of the aircraft #39;s power supply system. Details of sunlight in Tehran during the winter showed that the intensity of radiation is in an acceptable state, especially during the summer months when it is at its peak. The weight of the aircraft was predicted by mentioning the details, conceptual design, and mathematical model. Then, the realtime electrical simulation was introduced in Simulink, and its test results were described on the first of July. This simulation tool made it possible to predict the battery charge status and to observe directly the effect of changing some parameters on uninterrupted flight. The maximum power received from the panels on the specified day reached 80 watts at noon, and the time required to fully charge the battery was, also, determined. For further research, the possibility of connecting photothermal cameras or other types of cameras to record and detect fire on a laboratory sample was investigated. If the camera is deployed, using image processing methods and optimizing the results seem necessary and practical. It is, also, possible to design aircraft in different scales (larger or smaller) with different battery sizes and better panels with higher efficiencies. In the prototype, due to the high cost of solar panels, only an electric aircraft was built with the same level of battery power, and the performance of sensors and image transmission camera, positioning system, autopilot, and so on were successfully tested on it.
Keywords Solar plane ,Solar energy ,Electrical simulation ,Solar cells ,Smoke sensor ,Fire alarm ,MATLAB simulation.
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved