>
Fa   |   Ar   |   En
   بررسی تجربی عملکرد کولر تبخیری غیرمستقیم جریان عمود و حل عددی جریان هوا در مبدل حرارت-جرم  
   
نویسنده سعدی میثم
منبع مهندسي و مديريت انرژي - 1400 - دوره : 11 - شماره : 3 - صفحه:108 -121
چکیده    در فصول گرم، به‌منظور ایجاد آسایش، از تجهیزات سرمایشی مختلفی استفاده می‌شود. در ایران، کولر آبی به‌دلیل سادگی مکانیزم و قیمت مناسب، استفادۀ فراوانی دارد. برای مدیریت انرژی با توجه به بروز بحران کم‌آبی و نیز افزایش رطوبت هوای سرد تولیدی این نمونه کولرها، نیاز به سیستم‌های سرمایشی دیگر با همان قیمت و کارایی بهتر احساس می‌شود. خالی بودن بازار سرمایش از محصولات سرمایش تبخیری غیرمستقیم در مقایسه با بازار برخی کشورهای پیشرو، نیاز به تحقیق و توسعۀ این نمونه کولرها را نشان می‌دهد. در این مقاله، نمونه‌ای از کولر سرمایشی تبخیری غیرمستقیم جریان عمود ساخته و عملکرد سرمایشی آن بررسی شده است. بازده حباب مرطوب و بازده نقطۀ شبنم برای شرایط آب‌وهوایی مختلف محاسبه شده است. همین ‌طور حل عددی با مقادیر تجربی مقایسه شده است. نتایج آزمایش‌ها نشان می‌دهند که مبدل مورد آزمایش دمای ورودی ℃23 را به ℃19.2 و ℃42.3 را به ℃24.4 می‌رساند؛ به این معنی که با افزایش دمای هوای ورودی، ظرفیت سرمایشی مبدل افزایش می‌یابد. همچنین بیشترین سرمایش، برای دمای هوای ورودی ℃42 و نسبت رطوبت gr/kg 10.8 حاصل شده است. با افزایش دبی، دمای هوای خروجی از ℃20.1 به ℃21.7 می‌رسد و حدود ℃1.6 افزایش دما اتفاق می‌افتد؛ یعنی دماهای خروجی کمتر با کم شدن دبی هوای ورودی قابل حصول است. به‌طور خلاصه، نتایج نشان می‌دهند که افزایش دما و کاهش رطوبت نسبی هوای ورودی سبب بهبود عملکرد این نمونه کولر می‌شود. همچنین افزایش دبی هوای ورودی هرچند که باعث افزایش دمای هوای خروجی می‌شود، ظرفیت سرمایش را بهبود می‌بخشد.
کلیدواژه سیکل سرمایش میسوتسنکو، مبدل جریان عمود، بررسی تجربی، بازده حباب مرطوب، بازده نقطۀ شبنم
آدرس دانشگاه آزاد اسلامی واحد شاهرود, دانشکده فنی و مهندسی, ایران
پست الکترونیکی m.sadi@iau-shahrood.ac.ir
 
   Experimental Study of Maisotsenko Cross-Flow Cooler and Numerical Solution of Air in Mass and Heat Exchanger  
   
Authors Sadi Meisam
Abstract    Introduction: In hot seasons, various types of cooling equipment are used to create comfortable condition. Generally, in arid climates, evaporative cooling can reduce energy consumption and can replace compressorbased cooling. In Iran, swamp water coolers are widely used due to the simplicity of the mechanism and its reasonable price. Improper cooling, excessive water use, musty odor from swamp cooler, and improper airflow are common issues with these evaporative units. A better energy management, the water shortage crisis, as well as an increase in the humidity of cold air produced by these types of air conditioners requires other cooling systems of the same price and better efficiency. The shortage of the indirect evaporative cooling products in the cooling market compared with the cooling markets of some other leading countries calls for research and development of these types of air conditioners. In this paper, a type of indirect evaporative cooling system based on a crossflow heat exchanger is made and its cooling performance is investigated. Materials and methods: The main part of this type of cooler is a heat exchanger which is of the type of cross flow. This crossflow heat exchanger consists of a few wet and dry channels. In part of the product dry channels, a few holes are located along the direction of product air flow. While the inlet air flows into the product channel, part of the air can be steadily branched into the wet channels by passing through these holes. The product air which has been cooled acts as working air and moves in a perpendicular direction towards the initial product air flow. A variable speed blower, which is used to control the inlet air flow rate, is equipped at the inlet of the crossflow heat exchanger. The measured parameters includes air temperature, humidity, and velocity.In order to study the thermal performance, the data should be measured for a period of time. Relative humidity, air temperature, and flow rates of inlet air, relative humidity, air temperature of product flow, relative humidity, and air temperature of working flow should all be measured. Result: All of the measuring devices were calibrated simultaneously against a laboratory standard prior to the tests. Air velocity was measured using ananemometer. The type of anemometer is PROVAAVM 301 which measures the velocity in the range of 0 to 45 m/s. Temperature is measured by a digital thermometer with the measuring range of 50℃ to 300℃. The humidity is measured by a hygrometer with the measuring range of 0 to 99%. Wet bubble effectiveness and dew point effectiveness were calculated in different climatic conditions. Numerical solution was also compared with the experimental values. For three humidity ratios, the experiment was conducted and a good agreement between experimental and numerical results was achieved. The most important factor of the inlet air that affects the cooling performance is the humidity of the incoming air. Increasing the humidity ratio of the inlet air under similar operating conditions leads to an increase in the temperature of the outlet product and a decrease in the cooling performance of the heat exchanger. The behavior of the outlet air temperature changes is almost linear with respect to the inlet air temperature changes in the constant humidity ratio.The larger temperature difference between the inlet and the outlet at higher temperatures of the inlet air flow caused a more intense evaporation process in the wet duct, which in turn increased the cooling capacity. The experimental results while testing the heat exchanger during the experiment showed that, it takes the inlet flow with the temperature of 23℃ and delivers it to 19.2 and takes it in 42.3℃ and decreases the temperature to 24.4℃. This means that as the inlet air temperature increases, the heat exchanger cooling capacity increases. Also, the highest cooling was obtained for the inlet air temperatureof 42℃ and humidity ratio of 10.8 gr/kg. With increasing flow, the outlet air temperature rises from 20.1℃ to 21.7℃, it means an increase of about 1.6% in temperature; that is, lower outlet temperature can be achieved by reducing the inlet air flow rate. Discussion and Conclusion: In summary, the results show that increasing temperature and decreasing the relative humidity of the inlet air improves the performance of this type of cooler. Higher efficiency for lower humidity means that in climates not considered arid, indirect evaporative cooling can still take an advantage of the evaporative cooling process without increasing humidity. Although, an increase in the inlet air flow rate increases the outlet air temperature, the cooling capacity improves.
Keywords Maisotsenko cycle ,Cross-flow heat exchanger ,Wet bubble effectiveness ,Dew point effectiveness ,Humidity ratio ,Indirect evaporative cooing ,Experimental result ,Numerical simulation ,Evaporation process ,Cooling capacity
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved