|
|
numerical radius inequalities for products of hilbert space operators
|
|
|
|
|
نویسنده
|
moosavi baharak ,hosseini mohsen shah
|
منبع
|
journal of mathematical extension - 2022 - دوره : 16 - شماره : 12 - صفحه:1 -9
|
چکیده
|
We introduce some numerical radius inequalities for products of two hilbert space operators. among other inequalities, it is shown that if s, t ∈ b(h) and st = t s∗ , then ω(st) ≤ ω(s)ω(t) + 1 2 ds sup θ∈r deiθt +e−iθt ∗ , where ds = inf λ∈c ∥s − λi∥. also, we show that if s, t ∈ b(h) and s be self-adjointable, then ω(st) ≤(2∥s) − min λ∈σ(s) |λ| (ω(t)
|
کلیدواژه
|
bounded linear operator ,hilbert space ,norm inequality ,numerical radius.
|
آدرس
|
islamic azad universit, safadasht branch, faculty of science, department of mathematics, iran, islamic azad university, shahr-e-qods branch, faculty of science, department of mathematics, iran
|
پست الکترونیکی
|
mohsen_shahhosseini@yahoo.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|