|
|
refinements of numerical radius inequalities via specht’s ratio
|
|
|
|
|
نویسنده
|
khatib yaser ,amyari maryam ,hassani mahmoud
|
منبع
|
journal of mathematical extension - 2022 - دوره : 16 - شماره : 7 - صفحه:1 -18
|
چکیده
|
We present some new numerical radius inequalities of hilbert space operators. we improve and generalize some inequalities with respect to specht’s ratio. let a and b be two positive invertible operators on a hilbert space h and let x be a bounded operator on h. then ω((ab)x) ≤ 1 2s( √ h) kx ∗bx + ak, (h > 0, h 6= 1) where k · k, ω(·), s(·), and denote the usual operator norm, numerical radius, t
|
کلیدواژه
|
positive operators ,normalized positive linear map ,numerical radius ,specht’s ratio.
|
آدرس
|
islamic azad university, mashhad branch, faculty of science, department of mathematics, iran, islamic azad university, mashhad branch, faculty of science, department of mathematics, iran, islamic azad university, mashhad branch, faculty of science, department of mathematics, iran
|
پست الکترونیکی
|
mhassanimath@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|