>
Fa   |   Ar   |   En
   independent component analysis with functional neuroscience data analysis  
   
نویسنده aljobouri hadeel k
منبع journal of biomedical physics and engineering - 2023 - دوره : 13 - شماره : 2 - صفحه:169 -180
چکیده    Background: independent component analysis (ica) is the most common and standard technique used in functional neuroscience data analysis. objective: in this study, two of the significant functional brain techniques are introduced as a model for neuroscience data analysis.material and methods: in this experimental and analytical study, electroencephalography (eeg) signal and functional magnetic resonance imaging (fmri) were analyzed and managed by the developed tool. the introduced package combines independent component analysis (ica) to recognize significant dimensions of the data in neuroscience. this study combines eeg and fmri in the same package for analysis and comparison results. results: the findings of this study indicated the performance of the ica, which can be dealt with the presented easy-to-use and learn intuitive toolbox. the user can deal with eeg and fmri data in the same module. thus, all outputs were analyzed and compared at the same time; the users can then import the neurofunctional datasets easily and select the desired portions of the functional biosignal for further processing using the ica method.  conclusion: a new toolbox and functional graphical user interface, running in cross-platform matlab, was presented and applied to biomedical engineering research centers.
کلیدواژه electroencephalogram ,functional magnetic resonance imaging (fmri) ,graphical user interface (gui) ,independent component analysis (ica) ,functional neuroscience
آدرس al-nahrain university, college of engineering, department of biomedical engineering, iraq
پست الکترونیکی hadeel_bme77@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved