>
Fa   |   Ar   |   En
   automated segmentation of abnormal tissues in medical images  
   
نویسنده homayoun hassan ,ebrahimpour-komleh hossein
منبع journal of biomedical physics and engineering - 2021 - دوره : 11 - شماره : 4 - صفحه:415 -424
چکیده    Nowadays, medical image modalities are almost available everywhere. these modalities are bases of diagnosis of various diseases sensitive to specific tissue type. usually physicians look for abnormalities in these modalities in diagnostic procedures. count and volume of abnormalities are very important for optimal treatment of patients. segmentation is a preliminary step for these measurements and also further analysis. manual segmentation of abnormalities is cumbersome, error prone, and subjective. as a result, automated segmentation of abnormal tissue is a need. in this study, representative techniques for segmentation of abnormal tissues are reviewed. main focus is on the segmentation of multiple sclerosis lesions, breast cancer masses, lung nodules, and skin lesions. as experimental results demonstrate, the methods based on deep learning techniques perform better than other methods that are usually based on handy feature engineering techniques. finally, the most common measures to evaluate automated abnormal tissue segmentation methods are reported.
کلیدواژه skin abnormalities ,abnormal tissue detection ,multiple sclerosis ,breast cancer ,multiple pulmonary nodules ,automatic segmentation ,medical imaging
آدرس university of kashan, faculty of electrical and computer engineering, department of computer engineering, iran, university of kashan, faculty of electrical and computer engineering, department of computer engineering, iran
پست الکترونیکی ebrahimpour@kashanu.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved