|
|
computeraided tinnitus detection based on brain network analysis of eeg functional connectivity
|
|
|
|
|
نویسنده
|
mohagheghian f ,makkiabadi b ,jalilvand h ,khajehpoor h ,samadzadehaghdam n ,eqlimi e ,deevband m r
|
منبع
|
journal of biomedical physics and engineering - 2019 - دوره : 9 - شماره : 6 - صفحه:687 -698
|
چکیده
|
Background: tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and nonauditory brain areas. several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain networks. objective: in this paper, we introduce an approach to automatically distinguish tinnitus individuals from healthy controls based on wholebrain functional connectivity and network analysis. material and methods: the functional connectivity analysis was applied to the resting state electroencephalographic (eeg) data of both groups using weighted phase lag index (wpli) for various frequency bands in 244 hz frequency range. in this case control study, the classification was performed on graph theoretical measures using support vector machine (svm) as a robust classification method. results: experimental results showed promising classification performance with a high accuracy, sensitivity, and specificity in all frequency bands, specifically in the beta2 frequency band. conclusion: the current study provides substantial evidence that tinnitus network can be successfully detected by consistent measures of the brain networks based on eeg functional connectivity.
|
کلیدواژه
|
tinnitus ,electroencephalography ,network aanalysis ,functional connectivity ,classification
|
آدرس
|
shahid beheshti university of medical sciences (sbmu), school of medicine, department of medical physics and biomedical engineering, iran, tehran university of medical sciences (tums), school of medicine, department of medical physics and biomedical engineering, iran. research center for biomedical technology and robotics (rcbtr), institute of advanced medical, shahid beheshti university of medical sciences (sbmu), school of rehabilita, school of rehabilitation, department of audiology, iran, tehran university of medical sciences (tums), school of medicineadvanced medical, department of medical physics and biomedical engineering, iran. tehran university of medical sciences (tums), research center for biomedical technology and robotics (rcbtr), institute of advanced medical tech nologies (iamt),, iran, tehran university of medical sciences (tums), school of medicineadvanced medical, department of medical physics and biomedical engineering, iran. tehran university of medical sciences (tums)biomedical technology androbotics (rcbtr), instituteof advanced medical technologies(iamt), tehranuniversity of medical sciences(tums), tehran, iran, research center for biomedical technology and robotics (rcbtr), institute of advanced medical technologies (iamt), iran, tehran university of medical sciences (tums), school of medicineadvanced medical, department of medical physics and biomedical engineering, iran. tehran university of medical sciences (tums), research center for biomedical technology and robotics (rcbtr), institute of advanced medical technologies (iamt), iran, shahid beheshti university of medical sciences (sbmu), school of medicine, department of medical physics and biomedical engineering, iran
|
پست الکترونیکی
|
mdeevband@sbmu.ac.ir
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|