>
Fa   |   Ar   |   En
   On the Mean Convergence of Biharmonic Functions.  
   
نویسنده Abkar A.
منبع journal of sciences islamic republic of iran - 2006 - دوره : 17 - شماره : 4 - صفحه:337 -342
چکیده    Let t denote the unit circle in the complex plane. given a function f (element of)lp (t), one uses t usual (harmonic) poisson kernel p ((zeta),z) for the unit disk to define the poisson integral of f, namely h=p[f]. here we consider the biharmonic poisson kernel f((zeta),z) for the unit disk to define the notion of f-integral of a given function f(element) lp (t); this associated biharmonic function will be denoted by u=f=[f]. we then consider the dilations ur(z)=u(rz) for z(element of) t and 0 =< r <1. the main result of this paper indicates that the dilations ur are convergent to f in the mean, or in the norm of lp(t).
کلیدواژه Biharmonic function; Biharmonic Poisson kernel; Mean convergence (Convergence in the Mean).
آدرس imam khomeini international university, Department of Mathematics , ایران
پست الکترونیکی abkar@ikiu.ac.ir
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved