>
Fa   |   Ar   |   En
   Bernstein-Szegö inequalities in reproducing kernel hilbert spaces  
   
نویسنده reyes n.n. ,artes r.g.
منبع malaysian journal of mathematical sciences - 2012 - دوره : 6 - شماره : 2 - صفحه:125 -136
چکیده    Let s and t be bounded linear operators from a hilbert space h into a reproducing kernel hilbert space k{cyrillic} of complex or real-valued functions defined on some set k. for each χ ∈ χ,let k χ ∈ k{cyrillic} have the property that <g,k χ>=g(χ) for each g ∈ k. using bessel's inequality,we obtain a sharp estimate relating sf (χ),tf(χ),s*k χand t*k χ this estimate is then applied to obtain bernstein-szegö inequalities for fourier multiplier operators on sobolev spaces in l*.
کلیدواژه Bernstein-Szegö inequalities; Fourier series; Fourier transform; Reproducing kernel Hilbert space
آدرس institute of mathematics,university of the philippines-diliman,quezon city, Philippines, institute of mathematics,university of the philippines-diliman,quezon city, Philippines
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved