>
Fa   |   Ar   |   En
   اثرات متقابل شوری آب آبیاری و کود نیتروژنه اوره بر عملکرد و اجزای عملکرد گندم (.Triticum Aestivum L) رقم بم  
   
نویسنده کریمی مهدی
منبع تنش هاي محيطي در علوم زراعي - 1399 - دوره : 13 - شماره : 3 - صفحه:937 -951
چکیده    این پژوهش مزرعه‌ای با هدف بررسی مقدار کود اوره موردنیاز گندم در سطوح مختلف شوری آب آبیاری طراحی و در ایستگاه تحقیقات شوری صدوق یزد که مجهز به استخرهای ذخیره آب با کیفیت‌های مختلف است اجرا شد. این تحقیق دارای سه سطح شوری آب آبیاری 1.88، 7.22 و 16.14 دسی‌زیمنس برمتر و پنج سطح کود اوره شامل 0 (صفر)، 100، 200، 300 و 400 کیلوگرم در هکتار بود. آزمایش در قالب طرح آماری بلوک‌های کامل تصادفی و به‌صورت اسپلیت پلات با سه تکرار اجرا شد. نتایج نشان داد که مصرف کود اوره در کلیه سطوح شوری آب آبیاری ضرورت دارد. الگوی پاسخ گندم به کود نیتروژنی در هر سه سطح شوری مشابه بود و از معادله درجه دوم پیروی ‌کرد، لیکن با افزایش شدت تنش شوری، شیب افزایش عملکرد کاهش یافت. هم‌چنین نتایج این تحقیق نشان داد که با افزایش شوری آب آبیاری از 1.88 به 7.22 دسی‌زیمنس بر متر عملکرد دانه گندم کاهش معنی‌داری نداشت و نیاز کودی نیز تغییری نکرد. اما با افزایش شوری آب آبیاری به 16.14 دسی‌زیمنس بر متر میزان عملکرد دانه به میزان یک تن و اوره موردنیاز به میزان 140 کیلوگرم در هکتار کاهش یافت. درمجموع، نتایج این پژوهش نشان داد که برای تولید حدود 4.5 تن دانه گندم با استفاده از آب آبیاری با هدایت الکتریکی 1.88 تا 7.22 دسی‌زیمنس بر متر در شرایط گرم و خشک استان یزد مصرف کود اوره به ترتیب به میزان 400 و 300 کیلوگرم در هکتار و برای تولید 3.6 تن در هکتار عملکرد دانه با استفاده از آب آبیاری با هدایت الکتریکی 16.14 دسی‌زیمنس بر متر مصرف 260 کیلوگرم در هکتار اوره کفایت می‌کند.
کلیدواژه تولید گندم، خاک آهکی، شوری آب آبیاری، یزد
آدرس سازمان تحقیقات، آموزش و ترویج کشاورزی, مرکز ملی تحقیقات شوری, ایران
پست الکترونیکی karimi_nsrc@yahoo.com
 
   Interactive effects of irrigation water salinity and urea fertilizer on wheat (Triticum aestivum L.) yield and yield components  
   
Authors Karimi Mehdi
Abstract    IntroductionSoil salinity adversely affects crop productivity and agricultural sustainability in many areas of the world, especially in arid and semiarid regions. It is estimated that global lost crop production due to salt induced land degradation equals to US$ 27.3 billion annually (Qadir et al., 2014). Social and economic dimentions of salinity stress include employment losses as well as environmental degradation (Butcher et al., 2016). In addition, it is well documented that application of chemical fertilizers usually improve plant performance under saline conditons but results on plant fertilizer requirement under salt affected soils are contrary. While there is little evidence of yield benefits due to fertilizers addition of salinized fields at rates beyond optimal in nonsaline conditions, there is enough evidence indicating that soil salinity does not affect or decrease plant fertilizer needs (Hanson, 2006).It is known that the growth inhibition and the adverse effects induced by salinity can be alleviated by proper use of fertilizer and water management, depending on plant species,salinity level, and environmental conditions. However, over nitrogen fertilization may result in soil salinization and negatively affect plant performance. Moreover, the potential for nitrate leaching may increase where moderate to high amounts of salts are present in the soils because plants under salt stress can not absorb and utilize the applied nitrogen as efficiently as the plants not subjected to salinity stress. Thus nitrogen fertilizer management may need to be modified under arid and semiarid conditions of Yazd peovince with wide range of irrigation water qualities. Accordingly, the objectives of this field study were to (a) elucidate the interactions between nitrogen nutrition and irrigation water salinity and their effects on wheat growth and (b) test the possibility of wheat improvement at saline conditions by applying higher levels of nitrogen fertilizer. Materials and methodsA field experiment was conducted on wheat at Sadooq Salinity Research Station, Ashkezar, Yazd, Iran. The soil at the experimental site was calcareous with 30.92% total nutrient value, sandy loam texture, pH 8.06 and 0.22 % organic carbon. Mean annual temperatue is 18 °C and precipitation is 70 mm. The treatments, five urea application rates (0, 100, 200, 300 and 400 kg ha1) and three irrigation water qualities (2, 7 , 14 ds/m)), arranged in a randomized complete block design in the form of split plot with three repelications. Consisting 12 rows of wheat, each field plot measured 3* 5 m. All plots received common cultural practices including tillage and fertilizer application. Rgarding typical recommendations and guidelines for this region and soil type (Balali et al., 2000: Moshiri et al., 2015), all fertilizers, except urea that applied in 4 splits, were soilapplied before plnating and included 100 kg ha1 triple superphosphate, 40 kg ha1 FeSO4, 40 kg ha1 ZnSO4, 40 kg ha1 Mn SO4 and 20 kg ha1 CuSO4. To model the relationship between plant properties and irrigation water salinity, the data were subjected to different regression models at the probability level of 0.01 and 0.05 with the help of the Sigmaplot software. The analysis of variance for different parameters was done following ANOVA technique. When F was significant at p≤0.05 level, treatment means were separated using DMRT. Results and discussionThe results showed that ura application is necessary for improving wheat yield at all irrigation water salinity levels. While wheat response to nitrogen fertilizer was similar at different salinity levels and followed second order equation, with increasing salinity levels the wheat responded weakly. In addition, the results showed 20 percent increase in wheat nitrogen requirement with increasing salinity leves from 1.88 to 7.22 dS/m while no decrease in wheat graine yiled was found. However, with increasing salinity levels to 16.14dS/m, wheat grain yiled and urea requirement decreased by 20 percent ConclusionIn conclusion, application of 300kg ha1 urea for production of 4.5t ha1 wheat grain yield using irrigatin waters with electrical conductivities of 1.88 to 7.22 dS/m is needed. However, 240kg ha1 urea is enough for production of 3.6t ha1 wheat grain yield using irrigation water salinity of 16.14 dS/m.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved