|
|
پهنهبندی و تحلیل فرسایشپذیری کناره رود در بالادست رودخانه نکا، استان مازندران
|
|
|
|
|
نویسنده
|
اسماعیلی رضا ,معلمی سارا
|
منبع
|
پژوهشهاي دانش زمين - 1400 - دوره : 12 - شماره : 47 - صفحه:131 -143
|
چکیده
|
فرسایش کرانه رود فرایند پیچیدهای است که از تاثیرگذاری عوامل مختلف به وجود میآید و بر ویژگی های ژئومورفولوژیکی، هیدرولوژیکی و اکولوژیکی رودخانه تاثیر میگذارد. بسیاری از مطالعات فرسایش کرانه رود به صورت محدود و محلی انجام میشود اما در این مقاله فرسایشپذیری کرانه رود در بالادست رودخانه نکا در مقیاس بازه با استفاده از روش «پهنه بندی آسیبپذیری فرسایش کرانهای» یا bevz مورد بررسی قرار گرفت. پس از ترسیم مسیر رود از گوگل ارث، محدودهای به عرض 20 متر از کناره رود به عنوان حریم در نظر گرفته شد و پارامترهای موثر در فرسایش کناره رود شامل شیب کانال، پوشش گیاهی، لیتولوژی، شیب کرانه، ارتفاع کرانه، شاخص مئاندر و عامل انسانی برای این حریم مورد بررسی قرار گرفتند و لایههای اطلاعاتی آنها در gis تهیه گردید. با همپوشانی لایههای اطلاعاتی، نقشه نهایی فرسایشپذیری کناره رود در پنج کلاس طبقهبندی شد. براساس این نقشه 65 و 20 درصد از طول کرانه رود در محدوده مورد مطالعه به ترتیب فرسایشپذیری متوسط و زیاد دارند. درصد کرانههای با فرسایشپذیری زیاد با میانگین جابجایی کانال طی دوره 1398-1385 در بازههای مختلف ضریب همبستگی نسبتاً بالایی (0.84) را نشان میدهند. از میان پارامترهای مورد بررسی لیتولوژی سست و منفصل، پوشش گیاهی کم تراکم و برداشت شن و ماسه بیشترین تاثیر را در فرسایش پذیری کرانه رودخانه داشتهاند. مطالعات فرسایش کرانه رود در مقیاس بازه میتواند با ایجاد نگرش تحلیل فضایی در شناسایی مناطق با حساسیت بیشتر و ارتباط آن با بازههای بالادست و پایین دست در مدیریت کانال رود نقش موثری داشته داشته باشد.
|
کلیدواژه
|
رودخانه نکا، فرسایش کرانه رود، مازندران، bevz
|
آدرس
|
دانشگاه مازندران, دانشکده علوم انسانی و اجتماعی, گروه جغرافیا, ایران, دانشگاه مازندران, دانشکده علوم انسانی و اجتماعی, گروه جغرافیا, ایران
|
|
|
|
|
|
|
|
|
|
|
Zonation and analysis of stream bank erodiability in upstream of Neka River, Mazandaran
|
|
|
Authors
|
Esmaili Reza ,Moalemi Sara
|
Abstract
|
Extended abstractIntroductionStreambank erosion is a complex process that has many contributing factors. Geomorphologically, erosion of the streambed and influx of sediments and large woody debris into the channel lead to changes in river flow, floodplain development and river channel morphology. Accordingly, stream bank erosion is an important management problem along the alluvial rivers. The main aim of this study is to analyze the erosion susceptibility of the riverbank and to map the erosion zoning at reach scale.Material and methodsIn this paper, the Bank Erosion Vulnerability Zonation (BEVZ) method is used to investigate the erosion of the river bank. This method was first proposed by Bandyopadhyay et al. (2014) for zoning the hazard of river bank erosion on the River Haora of India. In this method, six parameters of river bank slope, meander index, longitudinal river gradient, soil erodibility factor, vegetation cover and anthropogenic factor were used. In this study, the above parameters were used with slight modifications and addition of lithology factor as well as changes in scoring. The study area was a reach of the Neka River (Iran, Mazandaran) from the village of Sefidchah to the Gelevard Dam with a length of 17 km. Path of the river was traced using Google Earth images and in Arc GIS software from both sides of the river, a buffer width of 20 meters was determined to assess erosion. After preparing the above data layers and classifying them into ARC GIS software, the final map was obtained using the overlay sum and, based on minimum and maximum scores. The erodibility of the river bank was classified into five groups. To analyze the erodibility of the riverbank, the amount of channel displacement was measured over a 13year period (20062019). The channel displacement was measured at a constant distance of 250 m and the mean displacement was calculated.Result and discussionMore than 66% of the river’s slope lies between 0.0010.01 m/m. Lithologically, 79.5% of the river flow is composed of alluvial sediments. In river banks, 63% of the vegetation is of very low density, including grasslands and scattered trees and approximately ten percent of the riverbanks consist of dense and very dense trees. The slope of the river bank was less than 10 degrees in 96.6% of the river’s course. Bank height varied from 1 to 2 meters in 59% of the river channel. The meander index is 60.7% of the river’s length between 11.5, and 26.4 percent of the river’s route is in the convex side. The anthropogenic factor in the study area is gravel extraction that include approximately 34% of the river route. With the overlapping of information layers, the final map of river bank erodibility has been divided into different classes including very low, low, moderate, high and very high. Of the entire study reach, 65 and 20 percent of the riverbanks have moderate and high erodibility, respectively.By comparing the centerline of the channel in the 13year period 20062019, the channel displacements in the reaches of 1 to 4 were 0.87, 0.85, 0.83 and 0.42 m/y, respectively. There is a correlation coefficient of 0.84 between the percentage of high erodibility of river bank and the annual channel displacement rate, which indicates the lateral displacement of the river was higher in the reaches with higher erodibility. Among the effective parameters in erosion, lithology is the first rank with 33%, which is due to river crossing of loose alluvial deposits. Another factor is vegetation that, due to low density, cannot withstand erosion, so it is ranked second in river bank erosion with 31% impact.ConclusionThe results of river bank erodibility map show that 20% of river banks have high erodibility potential.There is a significant relationship between the displacement of the river channel and the erosion rate of the river bank, which confirms the high probability of precision and accuracy of this map. This map provides a spatial view and is suitable for locating and planning any riverrelated human activities such as road, bridge, dam, sand extraction, and so on. Therefore, by identifying and analyzing the factors affecting river bank erosion at each reach, it will be possible to prioritize human activities more accurately and avoid potential hazards.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|