>
Fa   |   Ar   |   En
   locally graded groups with a condition on infinite subsets  
   
نویسنده faramarzi salles asadollah ,pazandeh shanbehbazari fatemeh
منبع international journal of group theory - 2018 - دوره : 7 - شماره : 4 - صفحه:1 -7
چکیده    Let g be a group‎, ‎we say that g satisfies the property t(∞) provided that‎, ‎every infinite set of elements of g contains elements x≠y‎,‎z such that [x‎,‎y‎,‎z]=1=[y‎,‎z‎,‎x]=[z‎,‎x‎,‎y]‎.‎we denote by c the class of all polycyclic groups‎, ‎s the class of all soluble groups‎, ‎r the class of all residually finite groups‎, ‎l the class of all locally graded groups‎, ‎n2 the class of all nilpotent group of class at most two‎, ‎and f the class of all finite groups‎. ‎in this paper‎, ‎first we shall prove that if g is a finitely generated locally graded group‎, ‎then g satisfies t(∞) if and only if g/z2(g) is finite‎, ‎and then we shall conclude that if g is a finitely generated group in t(∞)‎, ‎then‎ ‎g∈l⇔g∈r⇔g∈s⇔g∈c⇔g∈n2f.
کلیدواژه finitely generated groups ,residually finite groups ,locally graded groups.
آدرس university of damghan, department of mathematics and computer science, ایران, university of damghan, department of mathematics and computer science, ایران
پست الکترونیکی fateme.pazandeh@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved