>
Fa   |   Ar   |   En
   QUASIRECOGNITION BY PRIME GRAPH OF FINITE SIMPLE GROUPS {}^2D_n(3)  
   
نویسنده خسروی بهروز ,مرادی حسین
منبع international journal of group theory - 2014 - دوره : 3 - شماره : 4 - صفحه:47 -56
چکیده    Let g be a nite group. in [ghasemabadi et al., characterizations of the simple group2dn(3) by prime graph and spectrum, monatsh math., 2011] it is proved that if n is odd, then 2dn(3)is recognizable by prime graph and also by element orders. in this paper we prove that if n is even,then d = 2dn(3) is quasirecognizable by prime graph, i.e. every nite group g with ??(g) = ??(d) hasa unique nonabelian composition factor and this factor is isomorphic to d.
کلیدواژه Prime graph ,simple group ,linear group ,quasirecognition
آدرس Institute for Research in Fundamental sciences (I, School of Mathematics, Institute for Research in Fundamental sciences (IPM), P O Box: 19395{5746, Tehran, Iran,, ایران, amirkabir university of technology, Dept of Pure Math , Faculty of Math and Computer Sci , Amirkabir University of Technology (Tehran Polytechnic),, ایران
پست الکترونیکی moradi61hh@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved