>
Fa   |   Ar   |   En
   ON FINITE ARITHMETIC GROUPS  
   
نویسنده مالینین دیمیتری
منبع international journal of group theory - 2013 - دوره : 2 - شماره : 1 - صفحه:199 -227
چکیده    Let f be a finite extension of q, qp or a global field of positive characteristic, and lete=f be a galois extension. we study the realization fields of finite subgroups g of gln(e) stableunder the natural operation of the galois group of e=f. though for suffciently large n and a fixedalgebraic number field f every its finite extension e is realizable via adjoining to f the entries of allmatrices g 2 g for some nite galois stable subgroup g of gln(c), there is only a finite number ofpossible realization field extensions of f if g  gln(oe) over the ring oe of integers of e. after anexposition of earlier results we give their refinements for the realization fields e=f. we consider someapplications to quadratic lattices, arithmetic algebraic geometry and galois cohomology of relatedarithmetic groups.
کلیدواژه algebraic integers ,Galois groups ,integral representations ,realization fields
آدرس Institut des Hautes Etudes Scientifiques, Institut des Hautes Etudes Scientifiques, Le Bois-Marie 35, route de Chartres 91440 Bures-sur-Yvette, France, France
پست الکترونیکی dmalinin@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved