|
|
ON FINITE ARITHMETIC GROUPS
|
|
|
|
|
نویسنده
|
مالینین دیمیتری
|
منبع
|
international journal of group theory - 2013 - دوره : 2 - شماره : 1 - صفحه:199 -227
|
چکیده
|
Let f be a finite extension of q, qp or a global field of positive characteristic, and lete=f be a galois extension. we study the realization fields of finite subgroups g of gln(e) stableunder the natural operation of the galois group of e=f. though for suffciently large n and a fixedalgebraic number field f every its finite extension e is realizable via adjoining to f the entries of allmatrices g 2 g for some nite galois stable subgroup g of gln(c), there is only a finite number ofpossible realization field extensions of f if g gln(oe) over the ring oe of integers of e. after anexposition of earlier results we give their refinements for the realization fields e=f. we consider someapplications to quadratic lattices, arithmetic algebraic geometry and galois cohomology of relatedarithmetic groups.
|
کلیدواژه
|
algebraic integers ,Galois groups ,integral representations ,realization fields
|
آدرس
|
Institut des Hautes Etudes Scientifiques, Institut des Hautes Etudes Scientifiques, Le Bois-Marie 35, route de Chartres 91440 Bures-sur-Yvette, France, France
|
پست الکترونیکی
|
dmalinin@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|