|
|
boundedly finite conjugacy classes of tensors
|
|
|
|
|
نویسنده
|
bastos raimundo ,monetta carmine
|
منبع
|
international journal of group theory - 2021 - دوره : 10 - شماره : 4 - صفحه:187 -195
|
چکیده
|
Let n be a positive integer and let g be a group. we denote by ν(g) a certain extension of the non-abelian tensor square g ⊗ g by g × g. set t⊗(g) = {g ⊗ h | g, h ∈ g}. we prove that if the size of the conjugacy class x^ν(g) ≤ n for every x ∈ t⊗(g), then the second derived subgroup ν(g) ′′ is finite with n-bounded order. moreover, we obtain a sufficient condition for a group to be a bfc-group.
|
کلیدواژه
|
structure theorems ,finiteness conditions; non-abelian tensor square of groups
|
آدرس
|
universidade de bras´ılia, departamento de matemática, brazil, università di salerno, dipartimento di matematica, italy
|
پست الکترونیکی
|
cmonetta@unisa.it
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|