>
Fa   |   Ar   |   En
   Design, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles  
   
نویسنده mahdavi shahri mahnaz ,azizi susan
منبع journal of nanostructures - 2017 - دوره : 7 - شماره : 3 - صفحه:205 -215
چکیده    Magnetic nanoparticles (mnps) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. in many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. a superparamagnetic nanocomposite fe3o4/poly(maleic anhydride-co-acrylic acid) p(mah-co-aa) with a core/shell structure was successfully synthesized by a dispersion polymerization route. iron oxide nanoparticles were used as a core, and p(mah-co-aa) as a shell was covered on the surface of the fe3o4 magnetic nanoparticles. scanning electron microscopy (sem) and transmission electron microscopy (tem) showed that the fe3o4/p(mah-co-aa) magnetic nanocomposite were highly uniform in size and cubic shape with the average size about 17.06 nm. x-ray diffraction confirmed magnetite cores and also indicated that the binding process did not change the phase of fe3o4. vibrational sample magnetometer (vsm) revealed the nanoparticles were superparamagnetic and the saturation magnetization was 83.6 and 46.6 emu g^-1 for pure fe3o4 and composite nanoparticles, respectively. measurements by vsm also showed that the degree of saturation magnetization increased with increasing iron oxide concentration from 1% to 7 wt % of fe3o4.
کلیدواژه Core-shell structure ,Magnetization ,Nanocomposites ,Polymerization
آدرس islamic azad university, shiraz branch, department of chemistry, ایران, university putra malaysia, faculty of biotechnology and biomolecular sciences, department of bioprocess technology, Malaysia
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved