>
Fa   |   Ar   |   En
   مدل‌سازی تلاطم بازده سهام با روش مدل‌های فضای حالت غیرخطی متقارن و نامتقارن:مطالعه موردی بورس تهران  
   
نویسنده رستمی مجتبی ,مکیان نظام الدین
منبع تحقيقات مدل سازي اقتصادي - 1399 - شماره : 41 - صفحه:197 -229
چکیده    تلاطم معیار اندازه‌گیری عدم قطعیت است که در نظریه‌های مالی، مدیریت ریسک و قیمت‌گذاری اختیارات نقشی اساسی دارد. تلاطم، واریانس شرطی تغییرات قیمت‌های دارایی است که به‌طور مستقیم قابل مشاهده نیست و متغیری پنهان تلقی می‌شود که با استفاده از برخی تقریب‌ها به طور غیرمستقیم محاسبه می‌شود. دو رویکرد عمومی در ادبیات اقتصاد مالی جهت مدل‌سازی و محاسبه تلاطم ارائه شده است. در رویکرد اول، واریانس شرطی به عنوان تابعی از مربع شوک‌های گذشته‌ی بازده دارایی مدل‌سازی می‌شود. مدل‌های نوع garch در این طبقه جای می‌گیرند. در رویکرد جایگزین، تلاطم همچون یک متغیر تصادفی فرض می‌شود که با استفاده از الگوهای غیرخطی فضای حالت گوسی تحول می‌یابد. این نوع از مدل‌ها با عنوان تلاطم تصادفی (sv) شناخته می‌شوند. به دلیل آنکه مدل‌های sv شامل دو نوع فرآیند نوفه، یکی برای مشاهدات و یکی برای تلاطم پنهان، هستند در محاسبه تلاطم نسبت به الگوهای garch واقعی‌تر و منعطف‌تر می‌باشند. پژوهش حاضر به مدل‌سازی تلاطم در بازده سهام 50 شرکت فعال بورس تهران با استفاده از روش‌های متقارن و نامتقارن تلاطم تصادفی می‌پردازد که تفاوت آنها در وجود اثر اهرمی است. مقایسه تجربی این دو مدل با محاسبه احتمال پسین صحت هر مدل با استفاده از روش بیزی mcmc نشان دهنده برتری چشم‌گیر مدل نامتقارن asv است. نتایج در هر دو مدل متقارن و نامتقارن نشان دهنده پایداری بسیار بالای امواج تلاطمی تولید شده توسط شوک‌های وارد آمده بر بازده سهام است. لذا، تغییرات بازده بازار بورس تهران به دلیل این پایداری بالا پیش‌بینی پذیر خواهد بود.
کلیدواژه فضای حالت غیرخطی متقارن و نامتقارن، تلاطم تصادفی، بازار سهام، شیوه بیزی
آدرس دانشگاه یزد, دانشکده اقتصاد، مدیریت و حسابدارى, ایران, دانشگاه یزد, ایران
پست الکترونیکی nmakiyan@yazd.ac.ir
 
   Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market  
   
Authors Rostami Mojtaba ,Makiyan Seyed Nezamuddin
Abstract    Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial economics for modeling and calculating volatility. In the first approach, conditional variance is modeled as a function of the square of the past shocks of return on assets. Models of the GARCH type fall into this category. In the alternative approach, volatility is assumed to be a random variable, which evolves using nonlinear patterns of Gaussian state space. This type of model is known as Stochastic Volatility (SV). Because, SV models include two kinds of noise processes, one for observations and another for hidden, volatility, thus, they are more realistic and more flexible in calculating volatility than GARCH type. This study attempts to analyze the volatility in stock returns of 50 companies, which are active in Tehran Stock Market using symmetric and asymmetric methods of Stochastic Volatility, which is different in the presence of leverage effect. The empirical comparison of these two models by calculating the posterior probability of accuracy of each model using the MCMC Bayesian method represents a significant advantage of the ASV model. The results in both symmetric and asymmetric methods represent the very high stability of the volatility generated by the shocks on stock returns; therefore, the Tehran Stock market changes in returns due to this high sustainability will be predictable.
Keywords Symmetric and Asymmetric Nonlinear States ,Stochastic Volatility ,Stock market ,Bayesian Method
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved