>
Fa   |   Ar   |   En
   Hosoya polynomials of random benzenoid chains  
   
نویسنده Xu SHOU-JUN ,He QING-HUA ,Zhou SHAN ,Chan WAI HONG
منبع iranian journal of mathematical chemistry - 2016 - دوره : 7 - شماره : 1 - صفحه:29 -38
چکیده    Let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagons. furthermore, as corollaries, the expected values of the well-known topological indices: wiener index, hyper-wiener index and tratch-stankevitch-zefirov index of a random benzenoid chain with $n$ hexagons can be obtained by simple mathematical calculations, which generates the results given by i. gutman et al. [wiener numbers of random benzenoid chains, chem. phys. lett. 173 (1990) 403-408].
کلیدواژه Wiener index ,Random benzenoid chain ,Hosoya polynomial ,Expected value ,Generating function
آدرس Lanzhou University, School of Mathematics and Statistics, China, Lanzhou University, School of Mathematics and Statistics, China, Jiangsu Normal University, School of Mathematics and Statistics, China, Hong Kong Institute of Education, Department of Mathematics and Information Technology, China
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved