|
|
a study of vertex-degree function indices via branching operations on trees
|
|
|
|
|
نویسنده
|
cruz roberto ,espinal carlos ,rada juan
|
منبع
|
iranian journal of mathematical chemistry - 2025 - دوره : 16 - شماره : 1 - صفحه:1 -12
|
چکیده
|
let $g$ be a graph with vertex set $vleft(g right)$. the vertex-degree function index $h_{f}left(g right) $ is defined on $g$ as: $h_{f}left(g right) =sum_{uin vleft(g right)}fleft(d_{u} right),$where $fleft(x right) $ is a function defined on positive real numbers. our main concern in this paper is to study $h_{f}$ over the set $mathcal{t}_{n}$ of trees with $n$ vertices, over the set $mathcal{t}_{n,k}$ of trees with $n$ vertices and $k$ branching vertices, and over the set $mathcal{t}^{p}_{n}$ of trees with $n$ vertices and $p$ pendant vertices. namely, we will show in each of these sets of trees that it is possible via branching operations to construct a strictly monotone sequence of trees that reaches the extremal values of $h_{f}$, when $fleft( x+1right)-fleft( xright) $ is a strictly increasing function.
|
کلیدواژه
|
vertex-degree function index ,trees ,branching operations
|
آدرس
|
universidad de antioquia, instituto de matemáticas, colombia, universidad de antioquia, instituto de matemáticas, colombia, universidad de antioquia, instituto de matemáticas, colombia
|
پست الکترونیکی
|
pablo.rada@udea.edu.co
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|