>
Fa   |   Ar   |   En
   a study of vertex-degree function indices via branching operations on trees  
   
نویسنده cruz roberto ,espinal ‎carlos ,rada juan
منبع iranian journal of mathematical chemistry - 2025 - دوره : 16 - شماره : 1 - صفحه:1 -12
چکیده    ‎let $g$ be a graph with vertex set $vleft(g right)$‎. ‎the vertex-degree function index $h_{f}left(g right) $ is defined on $g$ as‎: ‎$h_{f}left(g right) =sum_{uin vleft(g right)}fleft(d_{u} right)‎,$‎where $fleft(x right) $ is a function defined on positive real numbers‎. ‎our main concern in this paper is to study $h_{f}$ over the set $mathcal{t}_{n}$ of trees with $n$ vertices‎, ‎over the set $mathcal{t}_{n,k}$ of trees with $n$ vertices and $k$ branching vertices‎, ‎and over the set $mathcal{t}^{p}_{n}$ of trees with $n$ vertices and $p$ pendant vertices‎. ‎namely‎, ‎we will show in each of these sets of trees that it is possible via branching operations to construct a strictly monotone sequence of trees that reaches the extremal values of $h_{f}$‎, ‎when $fleft( x+1right)-fleft( xright) $ is a strictly increasing function‎.
کلیدواژه vertex-degree function index ,trees ,branching operations
آدرس universidad de antioquia, instituto de matemáticas, colombia, universidad de antioquia, instituto de matemáticas, colombia, universidad de antioquia, instituto de matemáticas, colombia
پست الکترونیکی pablo.rada@udea.edu.co
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved