>
Fa   |   Ar   |   En
   computation of some graph energies of the zero-divisor graph associated with the commutative ring zp2 [x]/(x²)  
   
نویسنده rayer clement johnson ,jeyaraj ravi sankar
منبع iranian journal of mathematical chemistry - 2024 - دوره : 15 - شماره : 2 - صفحه:79 -90
چکیده    Let be the commutative ring = zp2 [x]/ x² with identity and z∗ be the set of all non-zero zero-divisors of. then, γ is said to be a zero-divisor graph if and only if a b = 0 where a, b v (γ) = z∗ and (a, b) e(γ). let λ₁, λ₂, . . . , λn be the eigenvalues of the adjacency matrix, and let µ₁, µ₂, . . . , µn be the eigenvalues of the laplacian matrix of γ(r). then we discuss the energy e ( γ(r)) = μn |λi| and m are the order and size of γ(r).
کلیدواژه zero-divisor graph ,commutative ring ,adjacency matrix ,laplacian matrix ,laplacian energy
آدرس vellore institute of technology, school of advanced sciences, department of mathematics, india, vellore institute of technology, school of advanced sciences, department of mathematics, india
پست الکترونیکی ravisankar.j@vit.ac.in, ravisankar.maths@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved